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Abstract
Wind turbines experience on average two failures per year, each resulting in approximately 150
hours of downtime (Santelo et al., 2022). Hybrid Wind, a European research initiative, aims to
investigate the conditions leading to failures in offshore wind turbines, particularly cold climate
effects. To enhance damage detection and health monitoring, the project is advancing the devel­
opment of digital twins (DTU, 2025). This thesis aims to contribute to the project by developing
a simple digital twin for mode shape and natural frequency prediction for the jacket foundation of
an offshore wind turbine.

The project aims to develop and validate simple finite element programs for dynamic analysis
based on bar and beam elements. It investigates whether simpler models can accurately estimate
the natural frequencies of a 3D Frame program. To facilitate comparison, four programs are de­
veloped: 2D Truss, 2D Frame, 3D Truss, and 3D Frame. From the finite element formulations,
system stiffness and mass matrices for bar and beam elements are derived, forming the foundation
for solving natural frequencies. The program implementation employs a parametric approach to
construct input data for the jacket structure, enhancing usability.

Each program is applied in a natural frequency and modal analysis of a combined jacket­transition
piece structure for an open­source 20 MW reference wind turbine. The analysis compares compu­
tation time and the approximation of natural frequencies against the 3D Frame program. Among
the tested models, the 3D Truss program exhibits the most accurate approximation of natural fre­
quencies when evaluating the first global mode for axial, bending, and torsional modes, with a
maximum relative difference of 0.35%. Moreover, the 3D Truss model only requires 25% of the
3D Frame model’s computation time.

The 2D Frame program provides a closer match to the 3D Frame program in bending modes 2
through 4, with relative differences of up to 1.8%. However, for the first global bending and
axial mode has a relative difference of 16% and 13%, respectively. While the first modes deviate
significantly, the 2D Frame model operates at just 10% of the computation time required by the 3D
Frame program. By comparison, the 2D Truss program exhibits general deviations across different
modes and is determined to be insufficient for accurately approximating natural frequencies.

Furthermore, the scope is expanded to include a simplified tower and RNA structure, which is im­
plemented using beam elements across all programs. This implementation significantly enhances
the approximation of natural frequencies determined by the 3D Frame program across all three
models. Among them, the 3D Truss program provides the most reliable approximation, with a
maximum relative difference of 1.5%. Additionally, the 3D Truss reduces computation time to
30–35% of the 3D Frame program.

This project demonstrates that a simplified 3D Truss model can effectively approximate natural
frequencies for a combined wind turbine and support structure when compared to a 3D Frame
model. The study highlights how the simplification of finite element models and use of bar ele­
ments can effectively reduce computation times, while maintaining reliability. Furthermore, the
findings support the possibility of using simpler modeling approaches for preliminary design and
experimental testing, offering practical alternatives to commercial finite element programs.
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Symbols
A Transformation matrix between local and global coordinates

A Cross­sectional area [m2]

B Strain interpolation matrix

Bd
i Strain interpolation function at node i, direction d

D Material property matrix

E Young’s modulus [Pa]

Fele System element force vector

Fsys System force vector

G Shear modulus [Pa]

I Second moment of area [m4]

J Polar moment of area [m4]

Kele System element stiffness matrix

Ksys System stiffness matrix

L Element length [m]

Mele System element mass matrix

Msys System mass matrix

M Bending moment [Nm]

N Displacement interpolation matrix

N Normal force [N]

N d
i Shape function for node i and direction d

Q Shear force [N]

d Global element displacement vector

de Local element displacement vector

dele System element displacement vector

dsys System displacement vector

f Global element force vector

fe Local element force vector

iele Index array for global DOFs associated with a specific element

i Start node index of a single element in a coupled system

j End node index of a single element in a coupled system
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k Global element stiffness matrix

ke Local element stiffness matrix

m Global element mass matrix

me Local element mass matrix

m1,m2 Local nodal moment at nodes 1 and 2 [Nm]

mi,mj Global nodal moment at nodes i and j [Nm]

ndof Total number of degrees of freedom in the global system

nele Total number of elements in the global system

pe Axial nodal force vector in the local coordinate system

p Axial distributed load [N/m]

p1, p2 Axial nodal force at nodes 1 and 2 [N]

pi, pj Axial nodal force in global x direction at nodes i and j [N]

qe Transverse nodal force vector in the local y direction

q Distributed transverse load in local y direction [N/m]

q1, q2 Transverse nodal force in local y direction at nodes 1 and 2 [N]

qi, qj Transverse nodal force in global y direction at nodes i and j [N]

re Transverse nodal force vector in the local z direction

r Distributed transverse load in local z direction [N/m]

r1, r2 Transverse nodal force in local z direction at nodes 1 and 2 [N]

ri, rj Transverse nodal force in global z direction at nodes i and j [N]

se Torsional nodal moment vector in the local coordinate system

s1, s2 Torsional nodal moment in local axis at nodes 1 and 2 [Nm]

si, sj Torsional nodal moment in global x direction at nodes i and j [Nm]

t Time variable [s]

ue Axial nodal displacement vector in the local coordinate system

u Displacement field in local x direction [m]

u1,u2 Local axial nodal displacement at nodes 1 and 2 [m]

ui,uj Axial nodal displacement in global x direction at nodes i and j [m]

ve Transverse nodal displacement vector in the local y direction [m]

v Displacement field in local y direction [m]

v1, v2 Transverse nodal displacement along the local y axis at nodes 1 and 2 [m]

vi, vj Nodal displacement in global y direction at nodes i and j [m]

we Transverse nodal displacement vector in the local z direction

w Displacement field in local z direction [m]
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w1,w2 Transverse nodal displacement along the local z axis at nodes 1 and 2 [m]

wi,wj Nodal displacement in global z direction at nodes i and j [m]

xℓ Local x unit vector

xℓ Local coordinate along the beam axis [m]

yℓ Local y unit vector

yℓ Local coordinate perpendicular to the beam axis [m]

zℓ Local z unit vector

zℓ Local coordinate perpendicular to the beam axis [m]

α Inclination angle [rad]

δ Virtual displacement function

ε Strain­state vector

εx Axial strain in local x direction

γ Torsional constant [m4]

κ Section curvature [1/m]

ν Poisson’s ratio

ϕ Torsional rotation vector [rad]

ϕ1,ϕ2 Local torsional rotation at nodes 1 and 2 [rad]

ϕi,ϕj Global torsional rotation at nodes i and j [rad]

ϕ′ Derivative of torsional rotation [rad/m]

ρ Material density [kg/m3]

σ Stress­state vector

θ1, θ2 Local nodal rotation at nodes 1 and 2 [rad]

θi, θj Global nodal rotation at nodes i and j [rad]

ω Natural angular frequency [rad/s]
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1 Introduction
In 2022, EU countries adopted the ’Trans­European Networks for Energy’ policy, a cross­border
framework dedicated to offshore grid planning. In continuation on this, in 2024, EU nations set
an ambitious goal to achieve an offshore wind capacity of 356­366 GW by 2050 (European Com­
mission, 2025). However, wind turbines currently experience an average of two failures per year,
each resulting in approximately 150 hours of downtime. (Santelo et al., 2022). This highlights a
critical need for research into the conditions leading to these failures. Furthermore, the develop­
ment of robust health and performance monitoring systems is essential for early damage detection,
ensuring the reliability and efficiency of offshore wind energy.

The Hybrid Wind project
Hybrid Wind is a major European research project, which aims to investigate the effect of cold
climate on turbine conditions. One of the main objectives of the project is to advance damage
detection and increase the robustness to weather effects. The objectives are to be expected to be
achieved through the development of digital twins for both simulations and real time monitoring,
as well as experimental work to test physical components under systematic variation of conditions.
The need for research of temperature conditions is due to the unknown impact of temperature on
critical loads and thereby risk of exceeding design parameters (DTU, 2025).

Project Main Objective
This project aims to contribute to the Hybrid Wind project by creating an ’in­house’ finite element
(FE) program to determine natural frequencies of a jacket foundation. Serving as a simplified dig­
ital twin, the program will simulate natural frequencies and mode shapes to support experimental
testing and preliminary design. The objective for the developed program is to be a user­friendly,
cost­effective tool. The program will utilize a parametric approach to generate input data to the
jacket structure, minimizing the required for application.

Various FE software solutions for dynamic analysis are available, predominantly commercial plat­
forms that require expertise in their operation and significant computational time for practical
application. The developed program in this project is designed to substantially reduce the time
required for application and computation, while efficiently approximating the natural frequencies
of the jacket structure. The program will be developed in Python, an open­source programming
language known for its simple syntax, making it accessible to users with only limited prior coding
experience.

The project will investigate whether simpler models can be used as alternatives to a full­scale 3D
Framemodel, while providing reliable results. The project scope will include developing programs
for simulation in 2D and 3D utilizing finite element formulations for bar and beam elements, re­
spectively. This will result in a comparative analysis of the four individual programs (2D Truss,
2D Frame, 3D Truss & 3D Frame). A key limitation of the project is the absence of laboratory and
operational data for validating the results. The analysis will include a comparison to a dynamic
analysis performed by Pontow et al. (2017) in Ramboll’s Offshore Structural Analysis Program
(ROSAP), a tool employed for structural design and monitoring within Ramboll (Ramboll, 2025).

The Jacket Foundation
The jacket foundation is one type of support structure for offshore wind turbines, which is a per­
manently fixed lattice structure, anchored to the seabed using piles. Jacket structures typically
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Figure 1.1: Definition of offshore wind
turbine and jacket. Pontow, S., Kaufer,
D., Shirzadeh, R. & Kühn M. (2017),
Design Solution for a Support Struc­
ture Concept for future 20MW, IN­
NWIND.EU, p. 8.

have three or four sides, each with a corresponding number of fixtures and legs. The leg elements
are reinforced by X­braces, forming the lattice design. This project specifically focuses on the
four­sided jacket structure.

Figure 1.1 shows the design of the collected support structure for a wind turbine, where the jacket
is built of 4 levels of X­braces. The main geometric parameters of the jacket structure include the
width at the mudline, the width at the top, and the overall height of the jacket. For this project, the
initial analysis will include the combined system of the jacket and transition piece. Additionally,
the tower andRotor­Nacelle­Assemblywill be added to enable a comparative analysis of the natural
frequencies between the complete system and the combined jacket­transition piece structure.

Thesis structure
The report is structured into four main parts, following the progression of the project. The first
part introduces the finite element theory for bar (Chapter 2) and beam elements (Chapter 3). This
theoretical framework provides the foundational principles for the development of the truss and
frame programs, respectively.

The second part details the implementation and program structure (Chapter 4). This part will also
include a validation process comparing the computation of mass and stiffness matrices with the
theoretical solutions outlined in the first part of the report (Chapter 5).

In the third part, an assessment of the developed programs will be performed. Firstly, through
a natural frequency and modal analysis of a jacket structure (Chapter 6). Secondly, through the
comparative analysis and evaluation of the results from the analysis (Chapter 7). This will include
a comparison to the natural frequency analysis presented in the report by Pontow et al. (2017).

Finally, the conclusions drawn from the assessment of the programs are presented, including an
evaluation of the defined objectives (Chapter 8). Additionally, a brief perspective on future work
and potential opportunities for expanding the project is discussed (Chapter 9).
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2 The Bar Element
The foundation of any finite element program lies in the definition and formulation of its elements.
In this chapter, the theoretical background of the bar element is presented, using the principle of
virtual work. The resulting element stiffness and mass matrix are formulated in both 2D and the
3D space. Ultimately, the assembly of these matrices into global system matrices is demonstrated.
This process forms the basis for deriving natural frequencies through an eigenvalue analysis.

2.1 The 2D Bar Element
The simplest element in finite element analysis (FEA) is the bar element illustrated in Figure 2.1,
which possesses one degree of freedom (DOF) per node. The bar element is a one­dimensional
element that only carries axial loads. The theory outlined in Logan (2021) serves as the foundation
for the theory of the bar element.

The element is characterized by two nodes, namely a start node (1) and an end node (2). It has a
defined length L, cross­sectional area A, density ρ, and Young’s modulus E. The bar element is
shown schematically in Figure 2.1, with nodal displacements u1 and u2 and axial nodal forces p1
and p2 along the local xℓ. The local x­axis is axial to the bar element, pointing from the start node
(1) to the end node (2). The nodal displacement vector ue and the nodal force vector pe for the
element in the local coordinate system are given by

ue =
[
u1
u2

]
e

pe =
[
p1
p2

]
e

(2.1)

It should be noted that the element is not capable of withstanding shear and bending forces, and
any effect of transverse displacement is disregarded.

Shape Functions
The local axial displacements u(xℓ) of the element are shown to vary linearly. Thus, the displace­
ments can be interpolated using the shape functions N u

1 (xℓ) and N u
2 (xℓ) and the nodal displace­

ments u1 and u2. This results in the linear relationship

u(xℓ) = N u
1 (xℓ)u1 +N u

2 (xℓ)u2 (2.2)

Figure 2.1: Definition of the 2D bar element.
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Figure 2.2: The bar elements’ shape functions.

with the shape functions

N u
1 (xl) = 1− xℓ

L
and N u

2 (xl) =
xℓ
L

(2.3)

It is essential that the shape functions in Figure 2.2 meet the criteria of assuming the value 1 at
one end and value 0 at the opposing end. Eq. (2.2) describes the axial displacement field of the
element, which can be written in in a matrix format as

u =
[
N u

1 N u
2

] [u1
u2

]
e

(2.4)

which can be formulated in compact form as

u = Nu ue (2.5)

where Nu denotes the displacement interpolation matrix for the axial displacement.

Stress and Strain
Axial strain is defined as the relative deformation to a reference position by

εx =
du
dxℓ

(2.6)

which is expressed via the spatial derivative. In general, the strain can contain several dimensions.
Therefore, the strain state is introduced in a matrix format. By substituting Eq. (2.5) into Eq. (2.6),
the strain vector becomes

ε = [εx] =
[ d
dx
] [
N u

1 N u
2

] [u1
u2

]
e

(2.7)

The strain interpolation matrix, denoted by B, is introduced. It is important to note that the de­
fined interpolation matrix Bu for the 2D bar element is constant and independent of x, and can be
expressed by

Bu =
[
Bu

1 Bu
2

]
=

[ d
dx
] [
N u

1 N u
2

]
(2.8)

whereby Eq. (2.7) can be formulated in compact form as

ε = Bu ue (2.9)

The section force, denoted byN , is defined as the normal force and is the only section force acting
in the 2D bar element. The stress state σ can contain several stress quantities and is therefore
introduced as a vector. The stress is described by the forces present during deformation as

σ =
[
N
]
=

[
E A

] [
εx
]

(2.10)

where

D =
[
E A

]
(2.11)

is the material­stiffness matrix and EA is an expression for the axial elastic stiffness. Hence, the
stress state of the element is expressed in compact form as

σ = D ε = D Bu ue (2.12)

employing the strain interpolation matrix from Eq. (2.7).

4 Developing a Digital Twin for the Dynamic Analysis of Jacket Foundations for Offshore Wind Turbines



2.2 Finite Element Formulation for Axial Vibration
The axial motion of an elastic bar is described by the differential equation (Krenk, 2018)

(EAu′)′ − ρAü+ p = 0 (2.13)

where the axial displacement u(x, t) and axial distributed load p(x, t) are dependent on both time,
t and the local coordinate x along the length of the bar element, running from 0 → L as shown in
Figure 2.1. Additionally, ρA is the mass per unit length. The notation is defined by

( )′ =
∂

∂x
(˙) =

∂

∂t
(2.14)

where primes denote differentiation with respect to x and dots denote differentiation with respect
to time.

2.2.1 The Principle of Virtual Work
The principle of virtual work is employed. Hence, Eq. (2.13) is multiplied by a virtual displacement
field δu and subsequently integrated over the length of the bar∫ L

0
δu

{
(EAu′)′ − ρAü+ p

}
dx = 0 (2.15)

The first term in Eq. (2.15) is integrated once, using integration by parts. Thereby, establishing
symmetry in the first term, by the following integration∫ L

0
δu (EAu′)′ dx =

[
δu (EAu′)

]L
0
−
∫ L

0
δu′EAu′ dx (2.16)

Eq. (2.16) is substituted into Eq. (2.15), and terms in the weak form equation are separated into∫ L

0
δu′EAu′ dx+

∫ L

0
δu ρA ü dx =

[
δu (EAu′)

]L
0
+

∫ L

0
δu p dx (2.17)

where the equivalent nodal loads and isolated nodal loads are collected on the right hand side.

2.2.2 Implementing Shape Functions
The virtual displacement and virtual strain is described by replacing the nodal displacements with
virtual nodal displacements δu in Eq. (2.4) and Eq. (2.9) leading to

δu(x, t) = Nu δue = (δue)TNT
u (2.18)

δu′(x, t) = Bu δue = (δue)TBT
u (2.19)

The time derivative of the displacement field in Eq. (2.4) yields

ü(x, t) = Nu üe =
[
N u

1 N u
2

] [ü1
ü2

]
e

(2.20)

The axial displacement u is expressed in terms of Eq. (2.4) and the strain for the bar element is
described using Eq. (2.9). Additionally Eq. (2.18)­(2.20) are substituted into Eq. (2.17). The work
equation is reformulated as∫ L

0
(δue)T BT

uEA Bu ue dx+

∫ L

0
(δue)T NT

u ρA Nu üe dx

=
[
(δue)T NT

uN
]L
0
+

∫ L

0
(δue)T NT

u p dx

(2.21)

where EAu′ defines the normal force N in the square brackets of Eq. (2.17).
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2.2.3 Deriving the Equation of Motion
All terms are collected on the left­hand side in order to factorize the equation

(δue)T
{(∫ L

0
BT
uEABu dx

)
ue +

(∫ L

0
NT
u ρANu dx

)
üe

−
[
NT
uN

]L
0
−
∫ L

0
NT
u p dx

}
= 0

(2.22)

with the virtual displacement (δue)T as a common factor. Since the virtual displacement δue ̸= 0,
Eq. (2.22) can be reformulated using the zero­product property by(∫ L

0
BT
uEA Bu dx

)
ue +

(∫ L

0
NT
u ρA Nu dx

)
üe −

[
NT
uN

]L
0
−
∫ L

0
NT
u p dx = 0 (2.23)

The external nodal forces are moved back to the right­hand side. This reveals the expression(∫ L

0
BT
uEA Bu dx

)
ue +

(∫ L

0
NT
u ρA Nu dx

)
üe =

[
NT
uN

]L
0
+

∫ L

0
NT
u p dx (2.24)

for the dynamic response under a time­dependent external force. By identifying the coefficients
for both the displacement and acceleration, the element stiffness matrix ke and the element mass
matrixme are defined by the integrals

ke =
∫ L

0
BT
uEA Bu dx =

EA

L

[
1 −1
−1 1

]
(2.25)

me =

∫ L

0
NT
u ρA Nu dx =

ρAL

6

[
2 1
1 2

]
(2.26)

which in this case are evaluated analytically. Furthermore, introducing the external force vector
pe, as defined in Eq. (2.1), allows the dynamic response equation Eq. (2.24) to be expressed as

ke ue +me üe = pe (2.27)

finalizing the derivation of the finite element formulation for axial motion.

2.3 Assembling System Matrices for the 2D Bar
2.3.1 Element Transformation
The theory introduced so far is only valid in local coordinates. Subsequently, when dealing with
more complex structures, the model must be able to accommodate arbitrarily positioned elements
in a two­dimensional space utilizing global coordinates. The transformation of the bar element is
formulated based on Nielsen et al. (2019) and visualized in Figure 2.3.

Figure 2.3: The 2D bar element transformation.
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Using standard trigonometric relations between the local and global coordinate systems, the dis­
placement ue in the element’s local axis can be expressed in terms of the global displacements u
and v as

ue = u cosα+ v sinα (2.28)

where α is the angle between the element axis and the global x­axis, as shown in Figure 2.3.
Furthermore, it can be beneficial to introduce[

cosα
sinα

]
=

[
nx

ny

]
=

[
xj − xi
yj − yi

]
1

L
(2.29)

where nx and ny are the components of the unit direction vector. The global coordinates of nodes
i and j are denoted by xi, yi and xj , yj . In order to utilize the mass matrix in global coordinates,
it is necessary to expand the mass matrix from Eq. (2.26) into a 4x4 matrix. This can be achieved
by expanding the interpolation matrix Nu to a 2x4 matrix, resulting in

Nu =

[
N u

1 0 N u
2 0

0 N u
1 0 N u

2

]
(2.30)

me =

∫ L

0
NT
u ρA Nu dx =

ρAL

6


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

 (2.31)

ke =
∫ L

0
BT
uEA Bu dx =

EA

L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 (2.32)

The relationship between local and global nodal displacements can be expressed by
u1
0
u2
0


e

=


nx ny 0 0
−ny nx 0 0
0 0 nx ny

0 0 −ny nx



ui
vi
uj
vj

 ⇒ ue = Ad (2.33)

introducing a transformation matrix A. The transformation matrix is applied to the load vector
accordingly 

p1
0
p2
0


e

=


nx ny 0 0
−ny nx 0 0
0 0 nx ny

0 0 −ny nx



pi
qi
pj
qj

 ⇒ pe = A f (2.34)

In Eq. (2.33) and Eq. (2.34), the vectors d and f are introduced to represent the nodal displacements
and nodal forces, in the global coordinate system along the global x­ and y­axes. Subsequently,
Eq. (2.27) is recalled and multiplied by a virtual displacement

δuTe (ke ue +me üe − pe) = 0 (2.35)

Utilizing the transformation to global coordinates, Eq. (2.33) and Eq. (2.34) are substituted into
Eq. (2.35)

δdT
(
AT keAd+ AT meA d̈− AT pe

)
= 0 (2.36)

Developing a Digital Twin for the Dynamic Analysis of Jacket Foundations for Offshore Wind Turbines 7



Given that the virtual nodal displacement, δdT ̸= 0, the equilibrium condition must hold. This
leads to the final form

AT keAd+ AT meA d̈ = AT pe (2.37)

of the equation of motion for a single element in global coordinates. Furthermore, the following
relationships obtained

k = AT keA, m = AT meA, d = AT ue f = AT pe (2.38)

for the stiffness and mass matrices, as well as the force vector.

2.3.2 Assembling the System Matrix
In order to formulate an equation for a system of elements, it is necessary to couple the element
equation from Eq. (2.37). The system stiffness matrix for a single element, denoted by Kele, is
hereby introduced. The system element stiffness matrixKele, is a square matrix where the number
of columns and rows corresponds to the total number of global DOFs (ndof ) in the system. The
global element stiffness matrix k(i, j), for an element between node i and j, is placed at indices
iele using

Kele(iele(i, j), iele(i, j)) = k(i, j) (2.39)
i = 1, 2, ..., ndof , j = 1, 2, ..., ndof (2.40)

where iele contains the global DOF numbers associated with the specific element

iele =
[
2i− 1 2i 2j − 1 2j

]
ele

(2.41)

for an element with a total of four DOFs. The elements’ start and end nodes are denoted by the
global node numbers i and j. Each of the global element stiffness matrices are added together in
order to obtain the global system matrix

Ksys =

nele∑
ele=1

Kele (2.42)

with nele being the total number of elements in the global system. Having established the system
matrix, Ksys, the system mass matrix Msys is introduced using the same approach of combining
element mass matrices

Mele(iele(i, j), iele(i, j)) = m(i, j) (2.43)
i = 1, 2, ..., ndof j = 1, 2, ..., ndof (2.44)

The system element mass matrices are then added to form the global system mass matrix

Msys =

nele∑
ele=1

Mele (2.45)

The force, displacement and acceleration vectors of each element are combined to form the coupled
element equations. Each element vector is expanded into a global element vector of length ndof

Fele(iele) = f(i, j) , dele(iele) = d(i, j) , d̈ele(iele) = d̈(i, j) (2.46)

by allocating the force, displacement and acceleration to the corresponding DOFs respectively.
The system vectors are obtained by summing the vectors of the system elements

Fsys =

nele∑
ele=1

Fele , dsys =
nele∑
ele=1

dele , d̈sys =
nele∑
ele=1

d̈ele (2.47)
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The dynamic response of a single element is described by the element matrices in global coordi­
nates in Eq. (2.37), which extends to a system of elements by employing the global system vectors
and matrices defined by Eq. (2.42), (2.45) and (2.47)

Ksys dsys +Msys d̈sys = Fsys (2.48)

which describes the dynamic response of a global system.

2.4 The 3D Bar Element
The 3D bar element, shown in Figure 2.4, is derived from an expansion of the 2D bar element.
The theoretical construct is identical to that previously described in Section 2.1 and 2.2. Hence,
the element’s transformation from 2D to 3D space results in the acquisition of an additional local
axis zℓ (Logan, 2021).

The shape functions N u
1 (xl) and N u

2 (xl) are identical to those used in the 2D case defined by
Eq. (2.3) and employed for defining themass and stiffnessmatrices. The elementmass and stiffness
matrices are shown in Eq. (2.25) and Eq. (2.26). Even if an element is considered in 3D space, the
incorporation of the z­coordinate has no effect on the displacement function u compared to that in
2D space.

2.5 Assembling System Matrices for the 3D Bar
2.5.1 Element Transformation
The 3D bar element possesses the capability to be arbitrarily placed in the 3D space. Therefore,
similarly to the 2D bar element, a transformation matrix is required to transform the node coordi­
nates from the local system to the global system. The coordinate transformation between the local
to global system is given by

ue = u cosαx + v cosαy + w cosαz (2.49)

As previously mentioned in Section 2.3.1, the mass matrix, and consequently the stiffness matrix,
must be expanded to 6x6 matrices to align with 3D coordinates. This is achieved by expanding
the interpolation matrix Nu to a 3x6 matrix as

Nu =

N u
1 0 0 N u

2 0 0
0 N u

1 0 0 N u
2 0

0 0 N u
1 0 0 N u

2

 (2.50)

Figure 2.4: Definition of the 3D bar element.

Developing a Digital Twin for the Dynamic Analysis of Jacket Foundations for Offshore Wind Turbines 9



which evidently also results in an expansion of both the displacement and the force vector by

ue =
[
u1 0 0 u2 0 0

]T
, pe =

[
p1 0 0 p2 0 0

]T (2.51)

An element transformation matrix A is defined by the element’s orientation in the 3D space, using
the following geometric assumptions

• The local x­axis (xℓ) is defined as a unit vector from the start node to the end node of the
element.

• The local y­axis is always perpendicular to the local x­axis (xℓ) and global z (z = [0, 0, 1]T ),
calculated via the cross product yℓ = z× xℓ to ensure orthogonality.

In the special case where the element lies parallel to the global z­axis (i.e., xℓ ∥ z), the cross
product yields a zero vector. In this case, the local yℓ is defined as the unit global y­axis:
yℓ = [0, 1, 0]T .

• The local z­axis, denoted by zℓ, is defined as a vector perpendicular to both the local x­axis
(xℓ) and the local y­axis (yℓ), calculated using the cross product zℓ = xℓ × yℓ

The transformation matrix A takes the form

A =

[
T 0
0 T

]
with T =

xTℓyTℓ
zTℓ

 =

xxℓ xyℓ xzℓ
yxℓ yyℓ yzℓ
zxℓ zyℓ zzℓ

 (2.52)

where each row of T corresponds to the direction cosines of the local axes expressed in the global
coordinate system. The element transformation is visualized in Figure 2.5.

Figure 2.5: 3D vector transformation.
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The relationship between local and global nodal displacements can be expressed by

u1
0
0
u2
0
0

 =

[
T 0
0 T

]


ui
vi
wi

uj
vj
wj

 (2.53)

using the transformation matrix A from Eq. (2.52). The same applies to the load vector pe. Re­
calling Eq. (2.37), the corresponding relationships between the global and local element quantities
are given by Eq. (2.38) with the matrices and vectors defined in the global system.

2.5.2 Assembling the System Matrix
The global system matrices are assembled as outlined in Section 2.3.2, using index array

iele =
[
3i− 2 3i− 1 3i 3j − 2 3j − 1 3j

]
ele

(2.54)

for an element with a total of six global DOFs.
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3 The Beam Element
Following the formulation of the bar element and derivation of axial displacements, the beam ele­
ment is introduced, accounting for bending behavior of the element. This provides the foundation
for the subsequent chapters, in which the dynamic response due to transverse forces and torsional
moments is examined. Ultimately, this results in the formulation of the eigenvalue problem and
the determination of natural frequencies.

3.1 The 2D Beam Element
The 2D beam element in Figure 3.1 possesses two DOFs at each node and is subjected to transverse
displacement and rotation. Hence the element has the capacity to transfer shear forces and bending
moments. The considered beam element in Figure 3.1 introduces the second moment of area I .
In the local coordinate system, the nodal displacement vector ve and the nodal force vector qe are
expressed by

ve =
[
v1 θ1 v2 θ2

]T
e

(3.1)

qe =
[
q1 m1 q2 m2

]T
e

(3.2)

The transverse nodal displacements are denoted by v and the rotations by θ, while q andm represent
the transverse forces and moments, respectively.

Shape Functions
The variation in transverse displacements are selected to be a function v(xℓ) that satisfies the Euler–
Bernoulli equation. There are four DOFs in total and the function must satisfy the conditions of
displacement and slope continuity (Logan, 2021). For the beam element a third order polynomial
is chosen as

v(xℓ) = a1x
3
ℓ + a2x

2
ℓ + a3xℓ + a4 (3.3)

The following step involves expressing the nodal DOFs via the displacement function v(x), achieved
by substituting either v(0) or v(L) accordingly. For the polynomial in Eq. (3.3), the nodal displace­

Figure 3.1: Definition of the 2D beam element.
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ments and rotations are derived as

v(0) = v1 = a4 (3.4)
dv(0)
dxℓ

= θ1 = a3 (3.5)

v(L) = v2 = a1L
3 + a2L

2 + a3L+ a4 (3.6)
dv(L)
dxℓ

= θ2 = a1L
2 + a2L+ a3 (3.7)

Upon solving the system of equations (Eq. (3.4) ­ (3.7)), the following results for ai are obtained

a1 =
2

L3
(v1 − v2) +

1

L2
(θ1 + θ2), (3.8)

a2 = − 3

L2
(v1 − v2)−

1

L
(2θ1 + θ2), (3.9)

a3 = θ1, (3.10)
a4 = v1 (3.11)

When substituting Eq. (3.8) ­ (3.11) into Eq. (3.3), the displacement function can be expressed in
a matrix format as

v =
[
N v

1 N θ
1 N v

2 N θ
2

] 
v1
θ1
v2
θ2


e

⇒ v = Nv ve (3.12)

where the shape functions are given by

N v
1 = 1− 3

(xℓ
L

)2
+ 2

(xℓ
L

)3
(3.13)

N θ
1 = L

[(xℓ
L

)
− 2

(xℓ
L

)2
+
(xℓ
L

)3
]

(3.14)

N v
2 = 3

(xℓ
L

)2
− 2

(xℓ
L

)3
(3.15)

N θ
2 = L

[
−
(xℓ
L

)2
+
(xℓ
L

)3
]

(3.16)

The shape functions are displayed in Figure 3.2 and have been determined to be consistent with all
established criteria in Eq. (3.4) ­ (3.7).

Figure 3.2: The beam elements’ shape functions.
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Stress and Strain
According to beam theory, the planar cross­sections of a beam remain planar after deformation or
bending if they rotate through a small angle dv/dx (Krenk and Høgsberg, 2012). Subsequently,
an expression for the curvature κ,

κ =
d2v
dx2

(3.17)

is obtained for the beam when the angles are considered to be of small order. The curvature is
placed in the strain matrix ε, similar to Eq. (2.7). The strain vector is obtained by substituting
Eq. (3.12) into Eq. (3.17),

ε = [κ] =
[ d
dx2

] [
N v

1 N θ
1 N v

2 N θ
2

] 
v1
θ1
v2
θ2


e

(3.18)

Thus, the strain interpolation matrix for the beam element Bv is introduced as

Bv =
[ d
dx2

] [
N v

1 N θ
1 N v

2 N θ
2

]
(3.19)

whereby, Eq. (3.18) can be formulated as

ε = Bv ve (3.20)

The bending moment, denoted byM , is the only section force acting in the 2D beam element and
therefore included in the stress state vector

σ =
[
M

]
=

[
EI

] [
κ
]

(3.21)

where the material stiffness matrix

D =
[
EI

]
(3.22)

contains EI , the elastic bending stiffness. Hence, the stress state of the element is expressed in
compact form

σ = D ε = D Bv ve (3.23)

describing the generalized forces present during deformation.

3.2 Finite Element Formulation for Bending Vibration
The transverse motion of the beam is described by the differential equation

(EI v′′)′′ + ρAv̈ − q(x, t) = 0 (3.24)

where the transverse vibration, v(x, t) and transverse force, q(x, t) are dependent on both time and
x along the local longitudinal axis (Krenk, 2018).

3.2.1 The Principle of Virtual Work
The force equation Eq. (3.24) is multiplied by a virtual displacement and integrated over the length
of the beam. The virtual work formulation is given by∫ L

0
δv

{
(EI v′′)′′ + ρAv̈ − q

}
dx = 0 (3.25)
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The same method of derivation is applied as previously demonstrated in the case of axial motion
in Section 2.2. The first term in the work formulation is integrated twice using the integration­by­
parts method,∫ L

0
δv(EI v′′)′′ dx =

∫ L

0
δv′′EI v′′ dx+

[
δv (EIv′′)′ − δv′(EIv′′)

]L
0

(3.26)

ensuring the first term in Eq. (3.25) becomes symmetrical. When Eq. (3.26) is substituted back
into Eq. (3.25), the terms in the weak form equation are separated into∫ L

0
δv′′EI v′′ dx+

∫ L

0
δv ρAv̈ dx =

∫ L

0
δv q dx+

[
δv′(EIv′′)− δv (EIv′′)′

]L
0

(3.27)

in which the right hand side combines equivalent nodal loads and isolated nodal loads.

3.2.2 Implementing Shape Functions
The transverse vibration is reformulated using the definitions in Eq. (3.12) and Eq. (3.18). The
same shape functions are employed as shown in Figure 3.2, where displacement and curvature are
represented in vectorial form as

v(x, t) = Nvve =
[
N v

1 N θ
1 N v

2 N θ
2

] 
v1
θ1
v2
θ2


e

(3.28)

ε = N′′
vve = Bvve =

[
Bv

1 Bθ
1 Bv

2 Bθ
2

] 
v1
θ1
v2
θ2


e

(3.29)

It is noted that from the square bracket in Eq. (3.27), the shear force is defined byQ = −(EI v′′)′

and the bending moment is defined byM = −EI v′′. All relations are substituted into Eq. (3.27),
which can be formulated as∫ L

0
(δve)TBT

v EI Bvve dx+

∫ L

0
(δve)TNT

v ρA Nvv̈e dx

=

∫ L

0
(δve)TNT

v q dx+
[
(δve)TNT

v Q− (δve)T (N′
v)

TM
]L
0

(3.30)

using shape functions Nv to represent inertia and load, while the strain interpolation Bv distributes
stiffness.

3.2.3 Deriving the Equation of Motion
The terms in Eq. (3.30) are arranged on the right­hand side of the equation in order to factorize by
using the common factor (δve)T . Using the zero­product property, the equation of motion yields∫ L

0
BT
v EI Bv dx ve +

∫ L

0
NT
v ρA Nv dx v̈e

=

∫ L

0
NT
v q dx+

[
NT
v Q− (N′

v)
TM

]L
0

(3.31)

From Eq. (3.31) it follows that the element stiffness matrix, ke and the element mass matrix, me

can be expressed by the integrals

ke =
∫ L

0
BT
v EI Bv dx =

EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (3.32)
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me =

∫ L

0
NT
v ρA Nv dx =

ρAL

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (3.33)

which in the present case are evaluated analytically.

3.3 Assembling System Matrices for the 2D Beam
To establish the relationship between local and global coordinates, a transformation matrix A is
introduced. The transverse displacement ve in the local coordinate system can be expressed as

ve = u (− sinα) + v cosα (3.34)

where the direction cosines (cosα and sinα) can be computed using Eq. (2.29), see also Fig­
ure 2.3. No transformation is required for the rotational degree of freedom θ, as for a rotation
θLocal = θGlobal in 2D problems. Based on Eq. (3.34), the relationship between local and global
nodal displacements is formulated in matrix form (Nielsen et al., 2019) as


v1
θ1
v2
θ2


e

=


−ny nx 0 0 0 0
0 0 1 0 0 0
0 0 0 −ny nx 0
0 0 0 0 0 1




ui
vi
θi
uj
vj
θj

 ⇒ ve = Ad (3.35)

Consequently, the same transformation relationships as presented in Eq. (2.38) are obtained. The
global system matrices are assembled by the method described in Section 2.3.2.

3.4 2D Beam Element with Axial and Transverse Effects
In order to model a two­dimensional beam element capable of resisting axial, shear, and bend­
ing forces, the theories previously developed for the 2D bar element and 2D beam element are
combined.

3.4.1 Combined Virtual Work
The axial element formulation outlined in Eq. (2.17) and the bending behavior described previously
in Eq. (3.27) are summed into a single element formulation by∫ L

0

{
δu′EAu′ + δv′′EI v′′ dx

}
+

∫ L

0
{δu ρA ü+ δv ρA v̈} dx

=
[
δuN + δv Q− δv′M

]L
0
+

∫ L

0
{δu p+ δv q} dx

(3.36)

In order to combine the terms in each integral the displacement interpolation matrix is introduced,

[
u
v

]
=

[
N u

1 0 0 N v
2 0 0

0 N v
1 N θ

1 0 N v
2 N θ

2

]


u1
v1
θ1
u2
v2
θ2


e

= Nde (3.37)
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which interpolates both u and v simultaneously. Likewise, the strain state is expanded and the
strain interpolation matrix of shape 2x6 is obtained by

ε =

[
εx
κ

]
=

[ d
dx 0

0 d2
dx2

] [
N u

1 0 0 N v
2 0 0

0 N v
1 N θ

1 0 N v
2 N θ

2

]


u1
v1
θ1
u2
v2
θ2


e

= B de (3.38)

The material property matrix D is the link between the stress states (normal force N and bending
momentM ) and the strains, defined by

σ =

[
N
M

]
=

[
E A 0
0 E I

] [
εx
κ

]
= D ε (3.39)

Substituting the coupled interpolation matrices from Eq. (3.38) and the material property matrix in
Eq. (3.39) into Eq. (3.36) results in(∫ L

0
BT DB dx

)
de +

(∫ L

0
NT ρAN dx

)
d̈e = fe (3.40)

Finally, the element stiffness matrix ke and mass matrixme are obtained by the integrals

ke =
∫ L

0
BTDB dx (3.41)

me =

∫ L

0
NTρAN dx (3.42)

for a beam element with 6 DOFs, accounting for axial and transverse effects.

3.4.2 Assembling the System Matrix
The systemmatrices are assembled by transforming the element matrices from local to global coor­
dinates as described in Eq. (2.37). The combined transformation matrix, A is introduced (Nielsen
et al., 2019) by

u1
v1
θ1
u2
v2
θ2


e

=



nx ny 0 0 0 0
−ny nx 0 0 0 0
0 0 1 0 0 0
0 0 0 nx ny 0
0 0 0 −ny nx 0
0 0 0 0 0 1





ui
vi
θi
uj
vj
θj

 ⇒ de = Ad (3.43)

The elements matrices in global coordinates are assembled into the system matrices, as outlined in
Section 2.3.2. The indices used to define the element system matrices Kele andMele are defined
by Eq. (2.54), as the 2D beam element contains a total of six DOFs when the axial effects are
included.

Developing a Digital Twin for the Dynamic Analysis of Jacket Foundations for Offshore Wind Turbines 17



3.5 The 3D Beam Element
Finally, the 3D beam element is introduced in Figure 3.3, where torsional effects are considered.
The element is modeled with two rotational DOFs ϕ, corresponding to the angle of twist at each
node. When modeling torsional vibration in 3D beams, it is generally appropriate to replace the
polar moment of area J with the torsional constant γ for non­circular sections to account for shear
deformation and warping effects. This allows for a more accurate representation of torsional stiff­
ness and dynamic response (Inman, 2007).

The following theory will be introduced using γ. In the application of the beam element, it is
utilized that γ = J for rods. The local nodal twist vector and the corresponding nodal load vector
are defined as

ϕe =
[
ϕ1 ϕ2

]T
e

(3.44)

se =
[
s1 s2

]T
e

(3.45)

where s corresponds to a torsional nodal moment.

Shape Functions
A linear angle­of­twist variation is assumed throughout the beam element. The interpolation of the
twist angle ϕ(xℓ) is given by

ϕ =
[
N ϕ

1 N ϕ
2

] [ϕ1

ϕ2

]
e

⇒ ϕ = Nϕϕe (3.46)

where the shape functions N ϕ
1 and N ϕ

2 are equivalent to the shape functions N u
1 and N u

2 from
Eq. (2.3).

Stress and Strain
The relevant strain measure is the rate of twist ϕ′, which represents the gradient of the twist angle
along the element axis. Differentiating Eq. (3.46) with respect to the local coordinate xℓ yields

ϕ′ = Bϕϕe (3.47)

where the strain interpolation matrix Bϕ is defined as

Bϕ =
d
dx

[
N ϕ

1 N ϕ
2

]
(3.48)

The internal stress quantity associated with torsion is the torsional momentMx, which is linearly
related to the rate of twist by

σ =
[
Mx

]
=

[
Gγ

]
ϕ′ = DBϕϕe (3.49)

where Gγ is as the torsional stiffness.

Figure 3.3: Definition of the 3D beam element (torsion).
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3.6 Finite Element Formulation for Torsional Vibration
The differential equation describing torsional vibration ϕ(x, t) is defined by

(Gγϕ′)′ − ρJϕ̈+ s = 0 (3.50)

where ρJ is the rotational mass moment of inertia and s(x, t) is the distributed torsional moment
(Inman, 2007).

3.6.1 The Principle of Virtual Work
The finite element formulation is derived by the method applied for axial motion in Section 2.2.
The work equation is obtained∫ L

0
δϕ

{
(Gγϕ′)′ − ρJϕ̈+ s

}
dx = 0 (3.51)

by multiplying a virtual torsion δϕ to Eq. (3.50) and integrating over the length of the element.
Employing partial integration will ensure that the first term in equation Eq. (3.51) becomes sym­
metrical. The weak form equation is given by∫ L

0
δϕ′Gγ ϕ′ dx+

∫ L

0
δϕ ρJ ϕ̈ dx =

[
δϕ (Gγ ϕ′)

]L
0
+

∫ L

0
δϕ s dx (3.52)

where the right hand side combines equivalent nodal moments and isolated nodal moments.

3.6.2 Implementing Shape Functions
Subsequently, the relations Eq. (3.46) and Eq. (3.47), are substituted into Eq. (3.52) and the equa­
tion of motion is obtained(∫ L

0
BT
ϕGγ Bϕ dx

)
ϕe +

(∫ L

0
NT
ϕρJ Nϕ dx

)
ϕ̈e =

[
NT
ϕMx

]L
0
+

∫ L

0
NT
ϕ s dx (3.53)

employing that the virtual rotation (δϕe)
T ̸= 0. The element stiffness and mass matrices are

defined by the integrals

ke =
∫ L

0
BT
ϕGγ Bϕ dx =

Gγ

L

[
1 −1
−1 1

]
(3.54)

me =

∫ L

0
NT
ϕρJ Nϕ dx =

ρJL

6

[
2 1
1 2

]
(3.55)

which are evaluated analytically.

3.7 Assembling System Matrices for the 3D Beam
Consider torsion, ϕ to be a vector pointing along the xℓ axis. The transformation of the vector
between local and global coordinates is identical to the transformation previously described in
Section 2.5.1. Therefore, the element transformation matrix is expressed by

[
ϕ1

ϕ2

]
e

=

[
cosαx cosαy cosαz 0 0 0

0 0 0 cosαx cosαy cosαz

]


ϕu1

ϕv1

ϕw1

ϕu2

ϕv2

ϕw2

 ⇒ ϕe = Aϕ

(3.56)

The same applies to the warping moments in se.
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3.8 3D Beam Element with Axial, Transverse and Torsional Effects
This section presents the derivation of a 3D beam element, accounting for axial deformation, bend­
ing in both transverse directions, and torsional effects. The beam is assumed to have six degrees
of freedom per node: three translational (u, v, w) and three rotational (ϕx, θy, θz).

3.8.1 Combined Virtual Work
Axial Deformation
The contribution from axial deformation is given by Eq. (2.17).
Transverse Bending in the x­y Plane
The transverse vibration for bending in the x­y plane is described by∫ L

0
δv′′EIz v

′′ dx+

∫ L

0
δv ρA v̈ dx =

[
δv Qy − δv′Mz

]L
0
+

∫ L

0
δv q dx (3.57)

which is associated with rotation about the z­axis, denoted by θz .
Transverse Bending in the x­z Plane
The transverse vibration for bending in the x­z plane is described by∫ L

0
δw′′EIy w

′′ dx+

∫ L

0
δw ρA ẅ dx =

[
δwQz − δw′My

]L
0
+

∫ L

0
δw r dx (3.58)

which is associated with rotation about the y­axis, denoted by θy.
Torsional Deformation
The torsional contribution, which includes both strain energy due to twisting and torsional inertia,
is expressed in Eq. (3.52). The total internal virtual work for the combined element is the sum of
the axial, bending, and torsional contributions

δWk =

∫ L

0
δu′EAu′ + δv′′EIzv

′′ + δw′′EIyw
′′ + δϕ′Gγϕ′ dx (3.59)

which in this demonstration only includes the stiffness­related terms. A similar formulation holds
for the inertial contributions following the same approach, which is not demonstrated here. To rep­
resent the displacement field along the beam, the displacement interpolation matrix is introduced,


u
v
w
ϕ

 =


N u

1 0 0 0 0 0 N u
2 0 0 0 0 0

0 N v
1 0 0 0 N θz

1 0 N v
2 0 0 0 N θz

2

0 0 Nw
1 0 −N θy

1 0 0 0 Nw
2 0 −N θy

2 0

0 0 0 N ϕ
1 0 0 0 0 0 N ϕ

2 0 0





u1
v1
w1

φ1

θ1y
θ1z
u2
v2
w2

φ2

θ2y
θ2z



⇒


u
v
w
ϕ

 = Nde (3.60)
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which interpolates both u, v, w and ϕ simultaneously. The generalized strain vector is determined
by the expression

ε =


εx
κz
κy
ϕ′

 =


d
dx 0 0 0

0 d2

dx2 0 0

0 0 d2

dx2 0

0 0 0 d
dx

Nde = Bde (3.61)

Furthermore the material property matrices are expanded in alignment with Eq. (3.59) as

Dk =


EA 0 0 0
0 EIz 0 0
0 0 EIy 0
0 0 0 Gγ

 , Dm =


ρA 0 0 0
0 ρA 0 0
0 0 ρA 0
0 0 0 ρJ

 (3.62)

and the stress state is expanded using,

σ =


Nx

Mz

My

Mx

 = Dk ε (3.63)

which concludes the definitions of interpolation and material property matrices for the combined
3D element.
Global Equation of Motion
When combining the coupled interpolation matrices, the global finite element equation ultimately
leads to (∫ L

0
BT Dk B dx

)
de +

(∫ L

0
NT DmN dx

)
d̈e = fe (3.64)

where f contains all external nodal loads and moments.

fe =
[
p1 q1 r1 m1x m1y m1z p2 q2 r2 m2x m2y m2z

]T (3.65)

Finally, the element stiffness matrix ke and mass matrix me for a beam element with 12 DOFs in
3D are obtained by the integrals

ke =
∫ L

0
BTDkB dx (3.66)

ke =



EA
L 0 0 0 0 0 −EA

L 0 0 0 0 0

0 12EIz
L3 0 0 0 6EIz

L2 0 −12EIz
L3 0 0 0 6EIz

L2

0 0
12EIy
L3 0 −6EIy

L2 0 0 0 −12EIy
L3 0

6EIy
L2 0

0 0 0 GJ
L 0 0 0 0 0 −GJ

L 0 0

0 0 −6EIy
L2 0

4EIy
L 0 0 0

6EIy
L2 0

2EIy
L 0

0 6EIz
L2 0 0 0 4EIz

L 0 −6EIz
L2 0 0 0 2EIz

L

−EA
L 0 0 0 0 0 EA

L 0 0 0 0 0

0 −12EIz
L3 0 0 0 −6EIz

L2 0 12EIz
L3 0 0 0 −6EIz

L2

0 0 −12EIy
L3 0

6EIy
L2 0 0 0

12EIy
L3 0

6EIy
L2 0

0 0 0 −GJ
L 0 0 0 0 0 GJ

L 0 0

0 0
6EIy
L2 0

2EIy
L 0 0 0

6EIy
L2 0

4EIy
L 0

0 −6EIz
L2 0 0 0 2EIz

L 0 −6EIz
L2 0 0 0 4EIz

L


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me =

∫ L

0
NTDmN dx (3.67)

me =
L

420



140ρA 0 0 0 0 0 70ρA 0 0 0 0 0
0 156ρA 0 0 0 22LρA 0 54ρA 0 0 0 −13LρA
0 0 156ρA 0 −22LρA 0 0 0 54ρA 0 13LρA 0
0 0 0 140ρJ 0 0 0 0 0 70ρJ 0 0
0 0 −22LρA 0 4L2ρA 0 0 0 −13LρA 0 −3L2ρA 0
0 22LρA 0 0 0 4L2ρA 0 13LρA 0 0 0 −3L2ρA

70ρA 0 0 0 0 0 140ρA 0 0 0 0 0
0 54ρA 0 0 0 13LρA 0 156ρA 0 0 0 −22LρA
0 0 54ρA 0 −13LρA 0 0 0 156ρA 0 22LρA 0
0 0 0 70ρJ 0 0 0 0 0 140ρJ 0 0
0 0 13LρA 0 −3L2ρA 0 0 0 22LρA 0 4L2ρA 0
0 −13LρA 0 0 0 −3L2ρA 0 −22LρA 0 0 0 4L2ρA


Figure 3.4 shows the configuration of a 3D beam element, which consists of 12 degrees of freedom,
allowing for translation and rotation in all three spatial directions.

3.8.2 Assembling the System Matrix
The system matrices are assembled by transforming the element matrices from local to global
coordinates as outlined in Eq. (2.37). For the complete element transformation in 3D, a block­
diagonal transformation matrixA applied. Each diagonal block is a 3x3 rotation matrix T , defined
by Eq. (2.52), that acts on either translations or rotations

A =


T3×3

T3×3

T3×3

T3×3

 (3.68)

where the first two blocks correspond to rotations translations at node i and the last two to those at
node j. The corresponding relationships between the global and local element quantities are given
by Eq. (2.38). The elements matrices in global coordinates are combined into the system matrices,
as outlined in Section 2.3.2 with the index array

iele =
[
6i− 5 6i− 4 6i− 3 6i− 2 6i− 1 6i 6j − 5 6j − 4 6j − 3 6i− 2 6j − 1 6j

]
ele

(3.69)

which is defined for an element with a total of 12 DOFs.

Figure 3.4: The 3D beam element with 12 DOFs.
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3.9 Mode Shapes and Natural Frequencies
The objective of the FE program is to perform a Natural Frequency Analysis (NFA). Natural fre­
quencies are defined as the frequencies of a free­vibration system, i.e. a system with no force or
damping. Consequently, the natural frequencies are determined exclusively by the characteristics
of the system, namely its stiffness and mass (Krenk, 2018). The response of the free­vibration
system is described by the equation of motion

Md̈+Kd = 0 (3.70)

whereM,K, and d refer to the global system matrices and vectors. The solution to the system of
differential equations is given by the harmonic equation

d(t) = u eiωt (3.71)

where ω is the natural angular frequency, and the vector u represents the nodal displacements
known as the natural modes. By differentiating Eq. (3.71) twice with respect to time, it is obtained
that

d̈(t) = −ω2u eiωt (3.72)

Eq. (3.72) and Eq. (3.71) are substituted into Eq. (3.70) and factorized by eiωt

⇒ −ω2Mu eiωt +Ku eiωt = eiωt(−ω2M+K)u = 0 (3.73)

Since, eiωt ̸= 0, the substitution of the solution yields the generalized eigenvalue problem

(K− ω2M)u = 0 (3.74)

The nontrivial solution to the mode shapes u can only be found when ω2 is a an eigenvalue of the
system. For a nontrivial solution, the determinant is zero and the eigenvalue is determined by the
characteristic equation

det(K− ω2M) = 0 (3.75)

The natural frequency is then determined by the square root of the eigenvalue, and the correspond­
ingmode shape to the eigenvalue is determined by solving the linear system. The complete solution
to the eigenvalue problem includes all quantities of eigenvalues and corresponding eigenvectors.
The number of unbounded degrees of freedom determines the number of solutions. The definition
and assembly of the system mass and stiffness matrices lead to real­symmetric matrix properties.
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4 Development of the FE program
The theory presented in the former chapters provide the foundation for the development of the FE
programs. A program is developed on the basis of each of the presented elements: the 2D bar,
the 2D beam, the 3D bar and the 3D beam. The following chapter outlines the main objectives
for the programs, the approach taken in implementation and the rationale behind some of the key
decisions.

4.1 Objective and Application
The main objective of the project is to develop an in­house program for natural frequency and
mode shape analysis. The programs are developed to be cost­effective, minimizing both the time
users spend on application and execution. Specifically designed for the jacket structure, the tool
should offer flexibility through a partially parametric implementation. This allows users to modify
the input data for analysis, enabling the investigation of various design choices.

The analysis in this project will focus on evaluating the accuracy of simple FE models. All four de­
veloped programs provide simplified solutions for computing natural frequencies and mode shapes
compared to well­established FE programs, commonly used in wind turbine design. The devel­
oped programs are designed with a ’plug and play’ approach, ensuring accessibility and facilitating
a more efficient solution process. Developed in Python, the programs demand only basic under­
standing of the syntax. Additionally, Python is an open­source software, ensuring unrestricted
access for the users.

4.2 Program Structure
All four Python programs have the same base structure, visualized in Figure 4.1. Each program’s
overall framework is divided into two sets of files: User­controlled Features and Adaptions, and
Structural Framework.

4.2.1 Structural Framework
The Structural Framework consists of functions for executing the core analytical processes, which
is not intended for user modification. This part of the program is responsible for the numerical
computation of natural frequencies and mode shapes, data storage operations, and plotting. The
program is organized in six directories, each containing functions dedicated to a specific aspect of
operation.

Data Storing and Output
Within the data directory lies the functions for the collection of data and storing results. The func­
tions include baseclear, baseinsert and basestore. The function basestore initializes a
database and calls the function baseclear, which clears and overwrites an existing database. The
basestore function then calls baseinsert, which is responsible for inserting the results in the
database.

The directory also contains the function output, which creates a .txt file with results. The output
file retrieves the natural frequencies directly from a data object and lists the natural frequencies and
corresponding mode numbers.

Building Input Data
The functions within the input data directory process user inputs and generate input data for the
analysis of the jacket structure. The function buildX creates the node coordinate matrix for the
jacket structure. In order to define the node coordinates, helper functions in geometry are used to
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Figure 4.1: Flow chart over program structure. Each table represents a folder and each row a
function file. User­controlled features are executed in separate files, which can be altered.
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Code 4.1: VIBframe

class VIBframe():
def __init__(self, X, C, mprop, bound, spring_support, solve_subset =
None): ...
# Assign input to object and initialize
...
# Build the mass matrix, M
def buildM(self):

self.M = buildM(self.X, self.C, self.mprop, self.nno, self.nne,
self.ldof)
# Build the system stiffness matrix, K
def buildK(self):

self.K = buildK(self.X, self.C, self.mprop, self.spring_support,
self.nno, self.nne, self.ldof)
# Solve the eigenvalue problem
def NFA(self):

self.omega, self.U = NFA(self.K, self.M, self.nno, self.ldof,
self.bound, self.solve_subset)

determine angles and points of intersection. In buildC the connectivity matrix is defined. Within
the connectivity matrix a number format is used as a reference to a material library constructed by
mprop.

The 2D model represents a single side of the jacket structure, created as a planar projection. The
3D model corresponds to a four­legged jacket structure, defined according to the properties in
Chapter 1, with user­defined inputs detailed in Section 4.2.2.

Classes
As shown in Figure 4.1, the directory for constructing system matrices and running the NFA does
not directly retrieve data from the input data directory. Instead, the VIBtruss/VIBframe class
governs the analysis, as shown in Code 4.2.1. The class environment takes the defined input,
execute functions to construct the system stiffness and system mass matrix, and finally solves the
eigenvalue problem.

The VIBdata class works by taking in a database as input. The database is created prior by the
basestore function. The VIBdata class then creates an object, similar to VIBtruss/VIBframe,
which contains the data needed for creating output and plotting. Differently to the VIBtruss/
VIBframe class, VIBdata has a set of functions, which are defined directly in the class rather than
in a separate directory. These functions are created to pull the designated data from the database.

Building the System Stiffness Matrix
The systemmatrices are built on the basis of the finite element formulations. Initially, the the strain
interpolation matrix is defined. For the bar element it is not dependent on the local coordinate, and
can therefore be determined by matrix product of strain interpolation matrix and material­stiffness
matrix as according to Eq. (2.25), which is executed in kbar.

For the beam element the strain interpolation functions are dependent on the local coordinate,
which is defined by the function Bint. Therefore, Eq. (3.32) is integrated using Gauss­Legendre
quadrature from intpL, described by Logan (2021). The structure of building the element stiffness
matrix, is visualized in Figure 4.2. For both the truss and frame model, the transformation matrix
is needed, which is computed in Abar/Abeam and retrieved in kbar/kbeam. The element stiffness
matrices are retrieved by the function buildK, which builds the system stiffness matrix accord­
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Figure 4.2: Process of building the beam model stiffness matrix.

ing to Eq. (2.42). Spring­stiffness is an optional feature, where the function kspring places the
spring stiffness in a system spring matrix. The spring stiffness matrix is then retrieved by buildK
and added to the system stiffness matrix. This is primarily thought as an alternative to defining
boundary conditions. The user input for supports is described by Section 4.2.2.

Building the System Mass Matrix
The directory for constructing the system mass matrix follows the same process as the system
stiffness matrix. The displacement interpolation matrix is defined in Nint. All element mass
matricies are integrated using intpL. For all programs, the transformation matrix Abar/Abeam is
retrieved from the system stiffness directory. The process is executed by the mbar/mbeam function,
which is called by buildM.

Additionally, the directory for constructing the system mass matrix contains the NFA function for
solving the eigenvalue problem. This function utilizes eigh from scipy.linalg, which is appli­
cable as the matrices examined in the problem are real­symmetric (The SciPy Community, 2025).
The structure of the NFA function allows to solve for a subset of modes, which confines the eigen­
value problem, thereby allowing faster computation.

Plotting Mode Shapes
The final directory handles visualization, featuring two plotting functions; plotconnectivity,
which plots the jacket’s geometry, and plotmodeshapes, which plots the obtained mode shapes.
These functions rely on a collection of plotting utilities defined in utils.

4.2.2 User­controlled Features and Adaptions
The User­Controlled Features and Adaptions are demonstrated in a separate set of example files.
These files can be modified to specific user needs. The natural frequency analysis is structured
into three files for: (1) constructing the jacket input data, (2) executing the analysis and generating
the output file, and (3) visualizing the mode shapes.

EX1.1: Building the Jacket Input Data
As described in Chapter 1, the project considers the design of a four­legged jacket structure with
X­braces. The majority of parametric user­controlled properties are implemented during the gen­
eration of input data. This allows users to to modify, test, and design various jacket configurations.
The design is limited to four­sided jackets with X­braces, using hollow rod members defined by
outer diameter and wall thickness. At a given level, a single cross­section can be assigned to both
brace and leg elements. The parametric choices for the analysis are presented in Section 6.1.1.

Developing a Digital Twin for the Dynamic Analysis of Jacket Foundations for Offshore Wind Turbines 27



Table 4.1: User­controlled data parameters.

Parameter Type Unit
Width at mudline float m
Width at top float m
Height of jacket float m
Number of X­braces int ­
Brace dimensions numpy.array m
Leg dimensions numpy.array m
Material elastic modulus float Pa
Material density float kg/m3

Number of elements per beam int ­

In the frame programs, beam elements can be subdivided to improve the numerical accuracy of the
natural frequency estimation. However, this implementation is not included for the truss models
due to the limitations of bar elements, which do not carry moments or transverse forces.

Additionally, an issue arises at the mid­brace connection in the 3D Truss model. As bar elements
posses no transverse stiffness, the midpoint of the X­braces provides no structural support in the
transverse axis. As a result, the mid­node of the X­braces has been removed from the 3D Truss
model.

EX1.2 Execution of Natural Frequency
The second file intended for user adaptation performs an analysis for the input data independently
from the data­generation process. Thereby, the natural frequency analysis (NFA) can be performed
without the need to reconstruct the input data for each new set of conditions. Two methods are
available for defining support conditions for the jacket structure. For both boundary conditions
and spring supports, users must specify the node number (node) and the associated local DOF
(ldof) where the support is applied. Boundary conditions are additionally defined by a prescribed
displacement (disp), usually initialized to zero. For spring supports the constraint is defined by a
spring stiffness (stiffness).

Additionally, users can define the input parameter solve_subset for VIBtruss/VIBframe to
specify the range of mode numbers for which the natural frequency analysis (NFA) should be
performed.

The VIBtruss/VIBframe classes create objects, as shown in Code 4.2.1, from which key results
can be accessed, including; the system stiffness matrix K, the mass matrix M, the natural cyclic
frequencies omega, and the corresponding mode shapes U. Following the analysis, the basestore
function can be used to save both input and output data.

The output file is generated by extracting the VIBtruss/VIBframe object and creating a text file
containing computed natural frequencies and correspondingmode numbers, which can be reviewed
before plotting mode shapes.

Table 4.2: User options for support types.

Boundary condition Spring support
numpy.array numpy.array
[node, ldof, disp] [node, ldof, stiffness]
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EX1.3. Plotting Mode Shapes
The last file intended for user modification handles loading the data object via VIBdata. The
plotmodeshapes function extracts the data object, takes an input for the mode number, and plots
the corresponding mode shape.

4.3 Expansion of the Project Scope
During the process of development, the 2D Truss was the initial model, serving as the foundation
for the structural framework of the 3D Truss, 2D Frame, and 3D Frame models. Following the
implementation of the jacket, the scope was extended to include a transition piece, tower and RNA.
These components are hard­coded. Therefore, modifying their values requires changes within the
structural framework. The specific values are given in Section 6.1.1.

4.3.1 Transition piece
In all four program variants, the transition piece is modeled as a bar/beam element between the top
nodes of the jacket.

4.3.2 Tower and RNA
The tower introduces modeling challenges, as bar elements cannot capture bending behavior. Con­
sequently, the tower and RNA are implemented differently in the truss and frame programs.

Frame implementation
Both the 2D and 3D Frame models incorporate the tower directly into the node coordinates and
connectivity matrices. When included, tower materials are hard­coded into mprop. The RNA is
modeled as a lumped mass and rotational inertia applied at the tower’s top node.

Truss implementation
In 2D and 3D Truss, the tower is implemented using beam elements, constructing a separate stiff­
ness and mass matrix for the tower­RNA system. These matrices are imported from the corre­
sponding frame models. The jacket and tower matrices are then coupled using Lagrange’s method
of undetermined multipliers, described in Cook et al. (1989), with implementation details provided
in Appendices A.1 and A.2.

Due to the presence of Lagrange multipliers, the combined system matrices are non­symmetric.
Therefore, the generalized eigenvalue solver scipy.linalg.eig is utilized (The SciPy Commu­
nity, 2025). As a result, the computed eigenvalues must be filtered and sorted before computing
the natural frequencies.
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5 Program Validation and Testing
Having established the theoretical foundation and implemented the finite element formulations
across all four programs, the subsequent step involves testing and validating these programs. This
chapter presents a systematic validation of key components of the finite element formulation: the
stiffness matrix, the mass matrix, the transformation matrix, and the resulting natural frequencies.
A comparison between numerical and analytical solutions is crucial to ensure that the numerical
models behave as expected under well­defined conditions, and provide a reliable basis for further
analysis and application.

5.1 2D Truss
The foundation for 2D Truss validation is the free­free bar element in Figure 5.1. The bar element
is assumed to have a constant cross­section.

5.1.1 The Stiffness Matrix
In Section 2.2, the 2D Truss equations have been developed, and the stiffness matrix ke has been
derived for the bar element using displacement functions, shown in Eq. (2.32). It should be noted
that the strain matrix in 2D Truss is independent of x, which is exploited by

ke =
∫ L

0
BTDB dx =

(
BTDB

)
L (5.1)

It can be demonstrated that, for the given element in Figure 5.1, the following equation holds:
Ksys = ke, since A = I.

The 2D Truss program is a numerical tool, which requires the assumption of values for A, E, and
L to facilitate a comparison of the results obtained using Code 5.1 with the analytical solution
in Eq. (2.32). The parameters of the bar in Table 5.1 are in accordance with the jacket’s leg in
Table 6.1 for geometric parameters, and Table 6.2 for material parameters.

Given that all elements in the stiffness matrix are dependent on E, A, and L, a unified solution
will be presented by calculating Ksys L/(EA). The unified solution in Code 5.2 is obtained from
the 2D Truss program after a subsequent filtration, that exclusively retains the axial components.

Figure 5.1: Free­free bar element.

Code 5.1: 2D Truss ­ Stiffness matrix implementation

A, L = Abar(n1,n2)
B = np.array([[-1/L, 0, 1/L, 0]])
D = np.array([[Ge[0]*Ge[1]]])
# Define local stiffness matrix
k = B.T @ D @ B * L

30 Developing a Digital Twin for the Dynamic Analysis of Jacket Foundations for Offshore Wind Turbines



Table 5.1: Material properties ­ free­free bar.

Element A E L ρ

Level A ­ Leg 556.3 · 10−3 m2 210.0 GPa 19.86 m 8500 kg/m3

Code 5.2: 2D Truss ­ Unified longitudinal stiffness matrix

# K_uni = K * L/(E*A)
K_uni = [[ 1. -1.]

[-1. 1.]]

The accuracy of the numerically assembled stiffness matrix is evaluated by comparing it to the
analytical formulation using

∆Ksys = Ksys,analytical −Ksys,numerical (5.2)

where ∆Ksys is the error matrix. To ultimately evaluate the accuracy of the implementation, the
Frobenius norm of ∆Ksys is calculated in Python, using numpy.linalg.norm (NumPy Devel­
opers, 2025). This norm gives a single scalar value representing the magnitude of the difference
between the two matrices. The relative error is calculated by

Kerror =
∥∆Ksys∥∥∥∆Ksys,analytical

∥∥ = 2.220 · 10−16 ∼ 0 (5.3)

A comparison between the results in Code 5.2 and Eq. (2.25) indicates that the numerical and
analytical stiffness matrices are well aligned with the chosen implementation.

5.1.2 The Mass Matrix
In Section 2.2 the 2D consistent­massmatrixme has been derived for the bar element, see Eq. (2.26).
The shape functions and consequently, the matrix N are dependent on x. In this case, all terms in
Eq. (2.26)must be integrated. In implementing the programs, the decision has beenmade to employ
the isoparametric formulation for the bar and the Gaussian quadrature method to solve Eq. (2.31),
see Code 5.3. The method is described in more detail in Logan (2021). Thereby Eq. (2.31) adapted
to

me = ρA

∫ L

0
NTN dx = ρA |J |

∫ 1

−1
NT
isoNiso ds (5.4)

Code 5.3: 2D Truss ­ Mass matrix implementation

A, L = Abar(n1,n2)
xip, wip = intpL(PolDeg)
J = L/2
# Define local mass matrix using Gaussian quadrature
m_ = np.zeros((4,4))
for i in range(len(xip)):

N = Nint(xip[i])
m_ += N.T @ N * wip[i] * J * Ge[0] * Ge[1]
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Code 5.4: 2D Truss ­ Unified longitudinal mass matrix

# M_uni = M * 6/(rho*A*L)
M_uni = [[ 2. 1.]

[ 1. 2.]]

In order to facilitate a comparison of the results obtained using Code 5.3 with the analytical solu­
tion in Eq. (2.26), the same system parameters from Table 5.1 are employed. The unified solution
in Code 5.4 is obtained by calculatingMsys 6/(ρAL), which exclusively retains the axial compo­
nents.

The numerical mass matrix is validated by comparing it against the analytical expression

∆Msys = Msys,analytical −Msys,numerical (5.5)

where ∆Msys is the error matrix. The norm is used to represent the magnitude of the difference
between the two matrices

Merror =
∥∆Msys∥∥∥∆Msys,analytical

∥∥ = 2.483 · 10−16 ∼ 0 (5.6)

The result in Eq. (5.6) reveals that the Gaussian quadrature provides a reliable approximation of
Eq. (2.26).

5.1.3 Natural Frequencies
Following the validation of the K­ and M­matrix, the remaining step is to derive the natural fre­
quencies and compare them to an analytical solution. The natural frequencies of the free­free
bar element, shown in Figure 5.1 are determined by solving the eigenvalue problem given by Eq.
(3.74), employing the material properties from Table 5.1.

The application of the eigenvalue solver, eigh is demonstrated in Code 5.5. To optimize the effi­
ciency of the process, it is advisable to restrict the solution to a subset of thematrix equation system,
leveraging the sorting of known displacements, such as boundary conditions or supports. Further­
more, the function can optionally take a start and end index to return a chosen set of eigenvalues;
e.g. [0,2] to return the smallest 3 eigenvalues.

Code 5.5: Solve eigenvalue problem

# Solve the generalised eigenvalue problem if boundary conditions are
specified

D, U = linalg.eigh(K[np.ix_(df,df)],M[np.ix_(df,df)], subset_by_index =
solve_subset)

# Solve the generalised eigenvalue problem
D, U = linalg.eigh(K,M, subset_by_index = solve_subset)

# Convert Eig. Values to Natural Frequencies
omega = np.sqrt(D).real

32 Developing a Digital Twin for the Dynamic Analysis of Jacket Foundations for Offshore Wind Turbines



Table 5.2: Relative errors of 2D longitudinal vibration for a free­free bar.

Mode Code 5.5, 1 ele. Code 5.5, 100 ele.
n = 1 0.1027 4.112 ·10−5

n = 2 0.1027 1.645 ·10−4

n = 3 0.1027 3.702 ·10−4

Figure 5.2: Relative frequency error against number of elements, 2D bar element.

In Inman (2007), analytical solutions for vibration frequencies in the longitudinal direction for
various bar configurations are provided. The solution for the free­free bar in Figure 5.1 is given by

ωn =
nπ

√
E
ρ

L
(5.7)

Employing Eq. (5.7) and Code 5.5, the relative errors are obtained and presented in Table 5.2.

As demonstrated in Figure 5.2, the model exhibits convergence and approaches the analytical re­
sults, thereby validating the model’s ability to approximate the analytical results. It is important to
note that this convergence is only possible in this particular instance, due to A = I.

5.1.4 Transformed Bar Element in 2D Space
To validate the transformation matrix of the 2D bar element in Eq. (2.33), the element shown in
Figure 5.1 is positioned in two­dimensional space using the nodal coordinates listed in Table 5.3.

Table 5.3: Nodal coordinates for 2D transformation test.

Node x [m] y [m]
1 0.000 0.000
2 19.22 5.000
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Table 5.4: Validation of the 2D bar transformation matrix.

Configuration 1st Natural Frequency [rad/s]
Aligned (Reference, A = I) 867.0
Transformed Element 867.0

The validation is performed by comparing the first natural frequency of the transformed element
with that of an aligned reference element, where the transformation matrix A = I. The two results
in Table 5.4 are expected to be identical, thereby confirming the validity of the transformation
procedure.

5.2 3D Truss
For the validation of 3D Truss the free­free bar element shown in Figure 5.1 is utilized.

5.2.1 The Stiffness Matrix
The implementation of the element stiffness matrix follows the same method as for 2D in Code
5.1, with the distinction of the updated Bmatrix. This results in a matrix, where the z­coordinate at
each node is responsible for two additional columns and rows in the stiffness matrix. The numerical
unified solution in Code 5.6 is determined using the properties detailed in Table 5.1.

The numerical stiffness matrix is evaluated by comparing it to the analytical formulation and cal­
culating the error as in Eq. (5.3), resulting in

Kerror = 7.182 · 10−11 ∼ 0 (5.8)

Indicating that the numerical and analytical stiffness matrices are well aligned.

5.2.2 The Mass matrix
As with the mass matrix in the 2D Truss program, an isometric implementation of the displacement
interpolation matrix is used. An analytical solution of the mass matrix is presented in Eq. (2.26).
To allow a direct comparison between Code 5.3 and the analytical solution, the system parameters
from Table 5.1 are used. The norm in Eq. (5.6) is utilized to denote the magnitude of the disparity
between the numerical solution in Code 5.6 and analytical matrix in Eq. (2.26)

Merror = 7.182 · 10−16 ∼ 0 (5.9)

The comparison indicates a high degree of consistency between the numerical and analytical re­
sults.

Code 5.6: 3D Truss ­ Unified longitudinal stiffness matrix

# K_uni = K * L/(E*A)
K_uni = [[ 1. -1.]

[-1. 1.]]

Code 5.7: 3D Truss ­ Unified longitudinal mass matrix

# M_uni = M * 6/(rho*A*L)
M_uni = [[2. 1.]

[1. 2.]]
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Table 5.5: Relative errors of 3D longitudinal vibration for a free­free bar.

Mode Code 5.5, 1 ele. Code 5.5, 100 ele.
n = 1 0.1027 4.112·10−5

n = 2 0.1027 1.645·10−4

n = 3 0.1027 3.702·10−4

Figure 5.3: Relative frequency error against number of elements, 3D bar element.

5.2.3 Natural Frequencies
Ultimately the natural frequencies will be validated by numerically solving Eq. (3.74) using
scipy.linalg.eigh in Code 5.5. The analytical solution from Inman (2007) addresses the eigen­
value problem in 1D. However, the natural frequencies of should not change from 1D to 3D if
identical properties are used. Therefore, Eq. (5.7) is applied, utilizing the material properties spec­
ified in Table 5.1. Using Eq. (5.7) and Code 5.5, the relative errors are obtained and presented in
Table 5.5.

As illustrated in Figure 5.3, the model demonstrates clear convergence towards the analytical solu­
tion, confirming its accuracy and reliability in approximating the expected results. As anticipated,
the findings obtained from the 3D model are identical to those acquired from the 2D model.

5.2.4 Transformed Truss Element in 3D Space
To verify the transformation matrix in Eq. (2.52) for the 3D Truss program, the element shown in
Figure 5.1 is used. The element is placed arbitrarily in three­dimensional space, with the nodal
coordinates specified in Table 5.6.

Table 5.6: Nodal coordinates for 3D transformation test.

Node x [m] y [m] z [m]
1 0.000 0.000 0.000
2 1.000 5.000 19.19
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Table 5.7: Validation of the 3D bar transformation matrix.

Configuration 1st Natural Frequency [rad/s]
Aligned (Reference, A = I) 867.0
Transformed Element 867.0

The transformation is validated by comparing the first natural frequency to that of a reference
element aligned along the global x­axis. Identical results in Table 5.7 confirm the validity of the
implemented transformation.

5.3 2D Frame
For the validation of the 2D Frame model, a clamped­free cantilever beam is utilized. Only the
transverse deformations and vibrations are considered in this section, as the axial behavior has
already been validated previously. Since the axial formulation and implementation are identical,
repeating the analysis would yield the same results.

5.3.1 The Stiffness Matrix
The element stiffness matrix is derived from the finite element formulation in Section 3.2. The iso­
parametric definitions of the strain interpolation functions and the Gaussian quadrature method are
employed. With respect to Eq. (3.32), the following modifications are made

ke =
∫ L

0
BTDB dx = |J |

∫ 1

−1
BT
isoDBiso ds (5.10)

The implementation of the equation is demonstrated in Code 5.8 and the analytical local element
stiffnessmatrix for transverse displacements is shown in Eq. (3.32) and used for validation. In order
compare the analytical solution and the Python implementation, the parameters of the system are
defined in Table 5.8. The beam is assumed to have a hollow circular cross­section, with geometric
and material properties as defined for analysis in Table 6.1 and Table 6.2.

The element stiffness matrix for the beam in Figure 5.4 is directly obtained in global coordinates
as A = I. The result in Code 5.9 is obtained using Code 5.8 followed by a subsequent filtration,
that exclusively retains the transverse components. Using Eq. (3.32), the analytical solution is
compared to the numerical solution in Code 5.9, resulting in

Kerror = 5.856 · 10−11 ∼ 0 (5.11)

The calculation of the error validates the 2D Frame model, given that the two solutions are close
to equivalent.

Figure 5.4: Clamped­free beam element.

Table 5.8: Material properties ­ clamped­free beam.

Element A I E L ρ

Level A ­ Leg 556.3·10−3 m2 432.8·10−3 m4 210.0 GPa 19.86 m 8500 kg/m3
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Code 5.8: 2D Frame ­ Stiffnes matrix implementation

A, L = Abeam(n1, n2)
xip, wip = intpL(PolDeg)
J = L/2 # Jacobi Determinant
D = np.array([[Ge[0]*Ge[1], 0],

[0, Ge[0]*Ge[2]]])
# Define local stiffness matrix
k_l = np.zeros((6,6))
for i in range(len(xip)):

B = Bint(xip[i],L)
k_l += B.T @ D @ B * wip[i] * J

Code 5.9: 2D Frame ­ Unified transversal stiffness matrix

# K = K * L**3/(E*I)
K = [[ 12. 119.15999998 -12. 119.15999998]

[ 119.15999998 1577.67839973 -119.15999998 788.83919987]
[ -12. -119.15999998 12. -119.15999998]
[ 119.15999998 788.83919987 -119.15999998 1577.67839973]]

5.3.2 The Mass Matrix
The mass matrix is implemented from the derivation of the finite element formulation in Section
3.2. The implementation method of the mass matrix is the same to that in Code 5.3. An analytical
solution is provided in Eq. (3.33).

The numerical solution derived from the 2D Frame model is presented in Code 5.10, followed by
a comparison with the analytical solution.

The computed error is given by

Merror = 1.650 · 10−10 ∼ 0 (5.12)

The numerical implementation thereby provides a reliable approximation of Eq. (3.33).

5.3.3 Natural Frequencies
Subsequent to validating theK­ andM­matrix, the final step is to derive the natural frequencies and
compare them with an analytical solution. The approach employed in this section is similar to that
used in Section 5.1.3. Inman (2007) provides analytical solutions to frequencies in the transverse
direction for various beam configurations. In this analysis, the primary focus will be on the first
three natural frequencies in the transverse direction of the clamped­free beam in Figure 5.4.

Code 5.10: 2D Frame ­ Unified transversal mass matrix

# M = M * 420/(rho*A*L)
M = [[ 156.00000001 436.92000002 54. -258.18000001]

[ 436.92000002 1577.67840009 258.18000001 -1183.25880007]
[ 54. 258.18000001 156.00000001 -436.92000002]
[ -258.18000001 -1183.25880007 -436.92000002 1577.67840009]]
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Table 5.9: Relative errors of 2D transverse vibration for a clamped­free beam.

Mode Code 5.5, 1 ele. Code 5.5, 100 ele.
n = 1 4.754·10−3 9.773·10−7

n = 2 8.486·10−3 2.909·10−9

n = 3 12.46·10−3 2.896·10−8

Figure 5.5: Relative frequency error against number of elements, 2D beam element.

The solution using weighted natural frequencies is given by

ωn = β2
n

√
EI

ρA
(5.13)

The material parameters used are the same as specified in Table 5.8. Using Eq. (5.13) and Code
5.5, the relative error in Table 5.9 is obtained.

As demonstrated in Figure 5.5, the model exhibits convergence and approaches the analytical re­
sults, thereby validating the model’s ability to approximate the analytical results. The first bending
mode stops converging at 24 elements, with an relative error of approximately 2 · 10−8. The other
modes stop converging around the same value.

5.3.4 Transformed Frame Element in 2D Space
To validate the transformation matrix in Eq. (3.35) for the 2D Frame element, the configuration
illustrated in Figure 5.4 is employed. The element is positioned arbitrarily in two­dimensional
space using the nodal coordinates listed in Table 5.3. Consistent results in Table 5.10 confirm the
validity of the transformation procedure.
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Table 5.10: Validation of the 2D beam transformation matrix.

Configuration 1st Natural Frequency [rad/s]
Aligned (Reference, A = I) 39.27
Transformed Element 39.27

Table 5.11: Material properties ­ clamped­free beam (torsion).

Element J G

Level A ­ Leg 865.7·10−3 m4 81.00 GPa

5.4 3D Frame
The 2D beam element in Figure 5.4 undergoes a transformation to the 3D­space, resulting in an
element with 12 DOFs. The beam is assumed to have properties as defined in Table 5.8. Fur­
thermore, given that the model is three­dimensional, the shear modulus and torsional constant are
defined in Table 5.11.

5.4.1 The Stiffness Matrix
The analytical 3D beam element stiffness matrix is given in Eq. (3.66). The development of the
numerical 3D beam stiffness matrix is analogous to 2D, demonstrated in Code 5.8, with the dis­
tinction of modifying the dimensions of ke.

Axial and transverse vibration are confirmed to remain consistent with those previously obtained,
as a result of the identical implementation in the program. Therefore, the focus is solely on the
torsional vibration. The torsional stiffness matrix for a beam element is derived analytically in
Eq. (3.54).

To compare the analytical solution with the Python implementation, the system parameters from
Table 5.8 and Table 5.11 are employed. The torsional stiffness matrix in Code 5.11 is obtained
using an extended version of Code 5.8.

The error for the stiffness matrix is

Kerror = 7.182 · 10−11 ∼ 0 (5.14)

The result shows agreement between the numerical and analytical mass matrices, confirming the
validity of the implementation.

5.4.2 The Mass Matrix
As previously stated, the element has 12 degrees of freedom, resulting in a 12x12 mass matrix.
However, for this comparison, the matrix is reduced to include only the torsional elements.

For the example illustrated in Figure 5.4, an analytical solution for the mass matrix is available in
Eq. (3.55). The torsional mass matrix is computed using an extended version of Code 5.3.

Code 5.11: 3D Frame ­ Unified torsional stiffness matrix

# K_uni = K_torsion * L/(G*J)
K_uni = [[ 1. -1.]

[-1. 1.]]
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Code 5.12: 3D Frame ­ Unified torsional mass matrix

# M_uni = M_torsion * 6/(rho*J*L)
M_uni = [[2. 1.]

[1. 2.]]

The error between the result in Code 5.12 and the mass matrix in Eq. (3.55) is

Merror = 7.182 · 10−11 ∼ 0 (5.15)

The result obtained demonstrates high consistency between the numerical and analytical mass ma­
trices, confirming the validity of the implementation.

5.4.3 Natural Frequencies
The methodology applied for validating the natural frequencies mirrors the approach described in
Section 5.1.3. Inman (2007) presents the analytical solution for the clamped­free beam element
for torsional beam vibrations

ωn =
(2n− 1)π

√
G
ρ

2L
(5.16)

which is used to evaluate the natural frequencies associated with Eq. (3.74). This analysis focuses
on the first two torsional modes of the clamped­free 3D beam configuration shown in Figure 5.4.
Applying Eq. (5.16) and comparing to the Python implementation yields the relative errors in
Table 5.12.

The convergence of the relative error is analyzed numerically in Python and shown in Figure 5.6.
As with Figure 5.5, the first bending mode stops converging at an relative error of approximately
2 · 10−8.

5.4.4 Transformed Beam Element in 3D Space
To validate the transformation matrix for the 3D beam element presented in Eq. (3.68), the ele­
ment is arbitrarily positioned in the three­dimensional space with the nodal coordinates defined in
Table 5.6. The transformation matrix implementation is confirmed to be accurate, as evidenced by
the identical results in Table 5.13.

Table 5.12: Relative errors of 3D torsional vibration for a clamped­free beam.

Mode Code 5.5, 1 ele. Code 5.5, 100 ele.
n = 1 1.027·10−1 1.025·10−5

n = 2 1.42310−1 9.25310−5

Table 5.13: Validation of the 3D beam transformation matrix.

Configuration 1st Torsional Frequency [rad/s]
Aligned (Reference, A = I) 268.8
Transformed Element 268.8
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Figure 5.6: Relative frequency error against number of elements, 3D beam element.
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6 Computational Analysis of Jacket Models
Following the validation of the programs for a single element, the analysis is extended to the jacket
structure. Subsequently, the scope of the study is expanded to an analysis of the combined system
formed by jacket, tower and RNA. The computation time of each program is evaluated considering
models with and without the tower structure. Finally, the convergence of the frame programs is
investigated.

6.1 Natural Frequencies of the Jacket Structure
This section presents and analyzes the natural frequencies and associated mode shapes of the jacket
structure across the four different modeling approaches. The design utilized during the analysis
and modes are categorized into global and local structural modes, to distinguish overall structural
behavior from member­level dynamics. However, the analysis will focus solely on the global
modes, as they govern the behavior of the global system.

6.1.1 Design of the Jacket Structure
The jacket foundation design is based on the support structure of the 20MW wind turbine, as
described in the report by Pontow et al. (2017). For the initial analysis of natural frequencies
and mode shapes both the jacket and transition piece is considered. This is done in order to best
assimilate the frequencies of the substructure. Instead of piles, the jacket is simply supported at the
base to prevent displacement in two or three directions. The 2D projection of the jacket structure
is visualized in Figure 6.1.

The jacket foundation is a four­legged lattice structure. Each of the four sides is supported by four
levels of X­braces, referred to as Levels A–D.

Figure 6.1: Main geometric properties of the 20MW reference jacket.
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Table 6.1: Geometric properties for leg and brace elements.
Level ­ Element Outer diameter [mm] Wall thickness [mm]
A ­ Brace 1168 32
B ­ Brace 965 22
C ­ Brace 965 25
D ­ Brace 914 20
A ­ Leg 2438 51
B ­ Leg 1828 45
C ­ Leg 1829 45
D ­ Leg 1829 51

The main geometric properties are the height of the jacket, the width at mudline and the width at
the top of the jacket given by Figure 6.1. These properties are found from the node coordinates
in Pontow et al. (2017), also given in Appendix B.1. The 2D representation is a projection of one
of the four sides from the 3D structure, resulting in equivalent heights. It is assumed that each of
the four X­braces has an equal angle with the leg. Consequently, the length of the leg and brace
elements decreases through level A­D.

The elements are hollow rods, defined by an outer diameter and a wall thickness, given by the
preliminary design of Pontow et al. (2017) and in Appendix B.2. Joints are not considered for the
geometry in the input data. The geometric properties are given in Table 6.1.

Cross­section area A, second moment of area I , and torsional constant J are determined from the
geometric properties, when constructing the material dictionary. The material properties given in
Table 6.2 apply to all steel elements in the jacket structure. The model’s density parameters are in
alignment with Pontow et al. (2017), while other steel properties such as the Young’s modulus E,
shear modulus G and Poisson’s ratio ν are taken from Danish Standard Association (2022). Since
the 2D structure represents only one side of the jacket, it should be noted that its mass is reduced
compared to the 3D structure.
Transition piece
The transition piece is implemented in each program by hard­coding main properties in the struc­
tural framework, as described by Section 4.3. In Pontow et al. (2017) the transition piece height
and total mass are specified, while an assumed width of 1.0 m is chosen in order to distribute the
weight of the transition piece, see Table 6.3. The second moment of area, torsional constant, and
distributed density are predefined in the programs.

In both 2D and 3D, the transition piece’s entire mass is considered. In the 2D models, the transi­
tion piece is represented as a single element between the two top nodes, whereas in 3D models,

Table 6.2: Material parameters for steel.
Symbol Value

Density ρ 8500 kg/m3

Elastic Modulus E 210 GPa
Shear Modulus G 87.8 GPa
Poisson’s ratio ν 0.3

Table 6.3: Transition piece properties.
Symbol Value

Height transition piece hp 8 m
Width transition piece bp 1 m

Table 6.4: Mass of models.

2D Models 3D Models ROSAP
Jacket 503 ton 1368 ton 1670 ton

Transition piece 430 ton 430 ton 450 ton
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(a) Side view. (b) Top view.

Figure 6.2: 3D Jacket and transition piece.

all four top nodes are linked along the sides and diagonals, see Figure 6.2 and Table 6.4. This
implementation ensures mass consistency with Pontow et al. (2017) and an infinitely stiff transition
piece.

6.1.2 Global Structural Modes
The analysis of the FE programs focuses on identifying global modes, as they primarily govern
the overall structural behavior. Special attention is given to the lowest natural frequencies, which
are most critical for dynamic responses to environmental loads such as wind and waves. In the
subsequent chapters, the term ’jacket’ will be used to describe the combined jacket­transition piece
structure.
Global Bending Modes
The global bending modes represent the dominant lateral deformation patterns of the entire jacket
structure. Table 6.5 lists the first four global bending modes across all models. The first bending
mode occurs in the range of approximately 2.9 Hz to 3.5 Hz.

The plots for the first bending mode from each of the programs are presented in Figure 6.3 and
Figure 6.4. All mode shapes used in this analysis are available in the Digital Appendix D.2. In
the 3D models, bending modes appear in pairs, corresponding to bending about the x­ and y­axes.
Due to the symmetry of the jacket structure, these mode pairs have identical natural frequencies.

The fourth global bending mode appears as the 64th mode in the 3D Frame model. This high
mode number is due to the presence of numerous local member modes, particularly from brace
elements. Further subdividing frame elements introduces additional local modes, pushing global
bending modes even higher in the mode sequence.

Table 6.5: Global bending mode frequencies [Hz] for jacket with corresponding system mode
numbers.

Bending Mode 2D Truss 2D Frame 3D Truss 3D Frame
1 2.900 1 2.933 1 3.484 1 3.496 4
2 10.54 3 10.32 3 9.694 5 10.26 22
3 20.88 7 16.65 6 17.11 13 16.35 44
4 35.14 9 20.71 10 19.01 20 20.40 64
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(a) 2D Truss, mode shape 1 ­ scaled by 3. (b) 2D Frame, mode shape 1 ­ scaled by 3.

Figure 6.3: 1st bending mode ­ 2D models.

(a) 3D Truss, mode shape 1 ­ scaled by 5. (b) 3D Frame, mode shape 4 ­ scaled by 6.

Figure 6.4: 1st bending mode ­ 3D models.

The 3D Frame program serves as a benchmark, as it is the most complex model accounting for
axial, transverse and torsional effects. As shown in Table 6.5, the first bending mode occurs at
mode 4, with a natural frequency of 3.496Hz. The 3DTrussmodel demonstrates a close alignment,
with a relative discrepancy of 0.34%. The first bending mode in the 2D programs appears at lower
frequencies, with relative differences of 17% and 16% for the truss and frame models, respectively.

For the second bending mode, the 2Dmodels show better agreement with the 3D Framemodel than
the 3D Truss does. In bending modes 3­4, the 2D Frame model provides the closest approximation
to the 3D Frame results, with a maximum relative difference of 1.8%.

Global Axial Modes
Global axial modes, involving vertical displacements along the longitudinal axis of the jacket, are
presented in Table 6.6. A comparison of the frequencies for the first global axial mode reveals that
the 2D models exhibit a reduced natural frequency in comparison to the 3D models. The relative
difference from the 3D Frame model is 13% and 14%, respectively, for the 2D Truss and 2D Frame
model. The 3D Truss provides a close approximation of the 3D Frame’s natural frequency, yielding
only a relative difference of 0.096%. However, the axial mode is not considered critical, as it is
unlikely to be excited by naturally occurring dynamic loads.
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Table 6.6: Global axial mode frequencies [Hz] for jacket with corresponding system mode num­
bers.

Axial Mode 2D Truss 2D Frame 3D Truss 3D Frame
1 9.067 2 9.032 2 10.45 9 10.46 24

Table 6.7: Global torsional mode frequencies [Hz] for jacket with corresponding system mode
numbers.

Torsional Mode 3D Truss 3D Frame
1 5.342 3 5.359 12
2 12.44 12 9.541 21

(a) 3D Truss, mode shape 3 ­ scaled by 5. (b) 3D Frame, mode shape 12 ­ scaled by 6.

Figure 6.5: 1st torsional mode.

Global Torsional Modes
The first torsional mode appears at approximately 5.35 Hz, with a slight difference of 0.32% tran­
sitioning from the truss to the frame model, as presented in Figure 6.5 and Table 6.7. The second
torsional mode is significantly higher in the 3D Truss model than in the 3D Frame model, with a
relative difference of 30%. When more modes are considered, it is observed that the 3D Frame
model captures more torsional modes compared to the 3D Truss.

6.2 Natural Frequencies of the Jacket­Wind Turbine System
Additionally, to capture the dynamic response of the combined system interaction, the jacket is
analyzed together with a tower and a simplified representation of the Rotor­Nacelle­Assembly
(RNA).

6.2.1 Design of Tower and RNA
The tower is based on the 20 MW reference design according to Pontow et al. (2017), and divided
into nine tapered sections, as summarized in Table 6.8 (see also Appendix B.3). Standard steel
properties are used for the tower as outlined in Table 6.2.

The RNA is modeled as a concentrated mass and torsional inertia applied to the tower’s top node,
with properties defined in Table 6.9. The RNA mass is provided in Pontow et al. (2017). In
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Table 6.8: Tower geometry.

Element Outer diameter [mm] Wall thickness [mm] Length [m] Height [m]
1 10950 51 6.14 6.14
2 10556 48 16.26 22.4
3 10163 45 16.27 38.7
4 9769 42 16.27 54.9
5 9375 40 16.26 71.2
6 8981 37 16.26 87.5
7 8587 34 26.26 103.7
8 8193 31 16.26 120.0
9 7777 28 17.17 137.1

Table 6.9: Tower and RNA properties.

Symbol Value
Tower mass mt 1356 ton
Rotor mass moment of inertia Jr 2919.66 ·106 kg m2

Rotor mass mr 1730 ton

addition, the rotor mass moment of inertia is given by the article by Gambier and Meng (2019).

An initial NFA is conducted with the tower modeled as a cantilever beam, which is done to enable
comparison of the tower’s global modes when it is placed on the substructure. Results are presented
in Table 6.10. Bending and axial modes are well aligned between the two models. Torsional
modes only appear in the 3D model.

6.2.2 Global Structural Modes
The global modes of the combined system are analyzed. Modes are categorized by whether they
are primarily introduced by the tower (T) or the jacket (J). In some cases, the response is coupled,
with both the tower and jacket contributing significantly to the mode shape.
Global Bending Modes
As shown in Table 6.11, the lowest two bending modes are dominated by tower motion, closely
matching the tower results in Table 6.10, indicating that the stiffness of the jacket has a limited
effect on the first tower modes. The third and fourth bending modes are associated with a coupled
response. Similar to the jacket­only case, the 2D models yield lower natural frequencies for the
first bending mode compared to the 3D Frame model. However, unlike the results in Table 6.5,
the 2D models here consistently underestimate the natural frequencies relative to the 3D Frame.
Among all programs, the 3D Truss provides the closest approximation to the 3D Frame results. The

Table 6.10: Global tower mode frequencies [Hz].

Mode Type 2D Frame 3D Frame
Bending 1 0.2040 1 0.2040 1
Torsion 1 ­ ­ 0.3217 3
Bending 2 0.6607 2 0.6607 4
Bending 3 3.223 3 3.223 6
Axial 1 4.523 4 4.523 8
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Table 6.11: Global bending mode frequencies [Hz] for combined jacket­wind turbine with corre­
sponding system mode numbers.

Bending Mode Intro. by 2D Truss 2D Frame 3D Truss 3D Frame
1 T 0.1815 1 0.1806 1 0.1915 1 0.1903 1
2 T 0.5955 2 0.5944 2 0.6218 4 0.6196 4
3 J/T 1.844 3 1.858 3 2.213 6 2.216 6
4 J/T 3.579 5 3.586 5 3.829 9 3.773 13

corresponding bending mode shapes from 3D Frame are illustrated in Figure 6.6 and Figure 6.7.

A common trend across all three models is that the largest relative difference from the 3D Frame
occurs at the third global bending mode, which results from a coupled interaction between the
tower and jacket. The relative differences are as follows: 17% for the 2D Truss, 16% for the 2D
Frame, and 1.5% for the 3D Truss.

(a) 3D Frame, mode shape 1 ­ scaled by 6. (b) 3D Frame, mode shape 4 ­ scaled by 6.

Figure 6.6: 1st and 2nd global bending mode ­ combined jacket, tower & RNA ­ 3D Frame.

(a) 3D Frame, mode shape 6 ­ scaled by 6. (b) 3D Frame, mode shape 13 ­ scaled by 6.

Figure 6.7: 3rd and 4th global bending mode ­ combined jacket, tower & RNA ­ 3D Frame.
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Table 6.12: Global axial mode frequencies [Hz] for combined jacket­wind turbinewith correspond­
ing system mode numbers.

Axial Mode Intro. by 2D Truss 2D Frame 3D Truss 3D Frame
1 T 2.947 4 2.919 4 3.499 8 3.466 11
2 J 11.49 7 9.253 7 9.876 15 9.867 33

Table 6.13: Global torsional mode frequencies [Hz] for combined jacket­wind turbine with corre­
sponding system mode numbers.

Torsional Mode Intro. by 3D Truss 3D Frame
1 T 0.3078 3 0.2972 3
2 J 5.143 11 5.148 20

Global Axial Modes
Table 6.12 shows the global axial modes of the combined system. A comparison with Table 6.10
and Table 6.6 reveals the origin of the axial modes in the combined system. The first axial mode in
Table 6.12 closely matches the first axial mode of the tower in Table 6.10, while the second axial
mode aligns well with the first axial mode of the jacket structure in Table 6.6.

Axial modes are generally less affected by the dimensionality of the model, and their frequen­
cies remain relatively stable across different configurations. However, a notable discrepancy is
observed between the 2D Truss and 3D Frame model for the second axial mode. As shown in
Table 6.12, the 2D Truss predicts a significantly higher frequency in mode 2 compared to the 3D
Frame, resulting in the largest relative difference of 16% among all models.
Global Torsional Modes
The torsional behavior of the complete system is only captured in the 3D models, shown in Ta­
ble 6.13. Compared to the jacket, the inclusion of the tower significantly lowers the first torsional
frequency. However, if the second torsional mode is compared to the first torsional mode of the
jacket structure, the frequency is only reduced with approximately 0.2 Hz.

6.3 Computation Time
The program efficiency is evaluated based on computation time. For each model the time re­
quired, to assemble the system matrices and solve the first 20 eigenvalues, is recorded and aver­
aged over 10,000 computations. When considering the tower, the entire matrix system must be
solved for the truss models, as no subset can be applied. These operations are executed within
the VIBtruss/VIBframe class. The resulting computation times are presented in Table 6.14 and
Table 6.15.

Table 6.14: Average computation time over 10,000 runs and relative speed for the jacket structure,
using the 2D Truss model as the benchmark. Computations (1) and (2) were performed on separate
hardware.

2D Truss 2D Frame 3D Truss 3D Frame
(1) Computation time [10−3 s] 2.244 4.062 11.32 46.23
(1) Relative speed 1 1.810 5.047 20.61
(2) Computation time [10−3 s] 1.801 3.057 8.349 38.90
(2) Relative speed 1 1.697 4.637 21.60
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Table 6.15: Average computation time over 10,000 runs and relative speed for the combined jacket,
tower, and RNA system, using the 2D Truss jacket model as the benchmark. Computations (1) and
(2) were performed on separate hardware.

2D Truss 2D Frame 3D Truss 3D Frame
(1) Computation time [10−3 s] 4.611 6.078 19.85 57.01
(1) Relative speed 2.055 2.709 8.849 25.41
(2) Computation time [10−3 s] 3.518 5.293 15.58 53.51
(2) Relative speed 1.954 2.939 8.651 29.72

The computation time is recorded on two computers and then compared as a relative speed with
jacket model in 2DTruss as the benchmark. This is due to the fact that the computation is dependent
on the hardware. The same benchmark is employed for the coupled system, thus facilitating a
comparison of the computation time across models.

As demonstrated in Table 6.14 and Table 6.15, the computational time increases across the four
programs, from 2D Truss to 3D Frame. The tables also show that the incorporation of the tower
and RNA has the most significant impact on the computation time of the truss models, particularly
the 2D Truss, which approximately doubles its computation time. As expected, the computation
times differ between the two test runs performed on separate hardware. However, the relative
speed provides a basis for comparing performance across models, independent of the absolute
computation time.

6.4 Convergence of the Frame Models
Convergence is evaluated for both frame models by examining their first two global modes, using
up to 32 element subdivisions. In the 2D Frame model, these are the first bending and first axial
mode, corresponding to system mode 1 and 2. In the 3D Frame model, the first global modes are
the first bending and first torsional mode, corresponding to mode 4 and 12.

The convergence results are presented in Table 6.16 and Table 6.17. Both tests solve for modes
1 through 12 to ensure comparable computation times. The computation time is averaged over
multiple run, which is particularly important for models with less element meshing, as they have
shorter computation times.

The convergence is shown as the relative difference from the reference value at 32 element subdi­
visions, plotted against the number of element subdivisions. The results in Figure 6.8 show clear
convergence for element mesh refinements of 1, 2, 4, 8, and 16 subdivisions. The linear trend
in the double­log plot indicates a power­law relationship, confirming convergence behavior. This
linearity is most pronounced in the initial refinements.

Table 6.16: Convergence results for 2D Frame.

No. el. No. runs Comp. time [s] 1st Bending Mode 1st Axial Mode
1 10,000 0.004130 2.93311561 9.03158965
2 10,000 0.009599 2.93259601 9.00491926
4 10,000 0.02490 2.93255993 9.00285176
8 1000 0.06870 2.93255696 9.00265669
16 1000 0.23144 2.93255659 9.00262832
32 100 0.9607 2.93255665 9.00262249
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Table 6.17: Convergence results for 3D Frame.

No. el. No. runs Comp. time [s] 1st Bending Mode 1st Torsional Mode
1 10,000 0.05439 3.49579246 5.35887366
2 10,000 0.1435 3.48194320 5.34184735
4 1000 0.5647 3.48102605 5.34070015
8 100 3.270 3.48096682 5.34061633
16 10 24.05 3.48096277 5.34060822
32 1 178.6 3.48096250 5.34060719

The computation time versus the number of element subdivisions is shown in the log­log plot
in Figure 6.9. The 2D Frame requires significantly less computation time than the 3D Frame,
primarily due to the lower number of DOFs. For reference, the computation time for 8 elements
in the 2D model is comparable to that of a single element in the 3D model.

Figure 6.8: Convergence of relative difference to value at 32 elements against number of subdivi­
sions of elements.

Developing a Digital Twin for the Dynamic Analysis of Jacket Foundations for Offshore Wind Turbines 51



Figure 6.9: Computation time against number of element subdivisions.
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7 Evaluation of the Computational Models
The computational analysis is evaluated, firstly focusing on the jacket structure and subsequently
on the combined system incorporating the tower and RNA. The evaluation includes an analysis
of natural frequencies and computation time for each model. In addition, the convergence behav­
ior of the frame programs is assessed to determine stability and reliability across different mesh
resolutions.

7.1 Program Assessment for Jacket Frequency Analysis
The 3D Frame program will serve as the benchmark in the evaluation of the modeled jacket struc­
ture, as it is the most complex program incorporating axial, transverse, and torsional effects.

7.1.1 Evaluation of 2D Models’ Performance Against 3D Frame
A comparison of the 2D Truss model to 3D Frame shows that the first global mode, for both
the axial and bending mode, present a reduced natural frequency. The relative difference is 17%
and 13% for the axial and bending mode, respectively. Additionally, for the subsequent modes 2
through 4 the 2D Truss under perform in accurately capturing the correct natural frequencies when
comparing to the 3D model.

The 2D Frame model present the same trend for the first global axial and bending mode. The
natural frequencies of the first global axial and bending modes are reduced by 16% and 14%,
respectively. The 2D Frame provides the best approximation of the 3D Frame’s bending modes 2
through 4 across all three programs, with a maximum difference of 1.8%.

The inaccuracy of the 2D models may be explained by several factors. A fundamental limitation
of the 2D structure is that it is only able to represent a single side of a four­sided jacket, which is
projected into a 2D plane. Consequently, the height of the models remains consistent between the
2D and 3Dmodels, but the length of the elements is reduced slightly, leading to a slightly increased
stiffness.

Furthermore, the jacket’s total mass has undergone a substantial reduction, decreasing from 1368
tons in the 3D model to 503 tons in the 2D models, accounting for only 37% of the full mass.
Despite the transition piece mass being equivalent in both models, it constitutes a much larger
portion of the total mass. Consequently, the utilization ratio of the jacket legs in the 2D models is
significantly higher than that of the 3D models. This disproportion leads to an imbalance between
mass and stiffness, which alters the system’s dynamic response.

Another source of inaccuracy in the 2D models is their inability to capture out­of­plane behavior.
In Figure 6.4 the 3D models first bending mode primarily involves displacement about a single
axis. However, a minor secondary contribution from bending about the perpendicular axis is also
observed, concurrent with local member vibrations. This coupled behavior cannot be represented
in 2D, which limits the accuracy of the dynamic response. Despite this, the 2D Frame model
appears to reasonably approximate the 3D Frame results beyond the first global bending mode,
as demonstrated in Table 6.5. In contrast, the 2D Truss model shows larger deviations and is less
accurate in capturing the correct natural frequencies.

7.1.2 Evaluation of 3D Truss Performance Against 3D Frame
The bending frequency results exhibit varying degrees of alignment between the 3D Truss and
3D Frame models. While the first global bending mode differs by only 0.34%, indicating strong
correspondence, modes 2 through 4 show moderate variation, with frequencies fluctuating slightly
around those of the 3D Frame. These deviations are likely due to the influence of local member
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interactions present in the frame model, which the truss model cannot replicate. A limiting factor
is the absence of mid­brace node connections, which restricts the 3D Truss model from captur­
ing local brace behavior. Additionally, this results in some mode types being more difficult to
categorize, as the 3D Truss model is less flexible.

In terms of torsional behavior, the 3D Truss model captures the first global torsional mode with
great accuracy, showing a relative difference of just 0.32% compared to the 3D Frame. However,
the second torsional mode differs significantly, with a 30% deviation. This suggests that frame
elements provide a more accurate representation of complex torsional modes.

Finally, the first global axial mode shows great agreement, with a relative difference of 0.34%.
This indicates that the 3D Truss model provides a reliable approximation of the first axial mode
for full 3D Frame structure.

7.2 Program Assessment for Jacket­Turbine Frequency Analysis
The evaluation of the combined structure, comprising of the jacket, tower and RNA, will include a
comparison to the natural frequency analysis presented in Pontow et al. (2017). Furthermore, the
results of the combined structure across all three programs will be evaluated with the 3D Frame as
benchmark.

7.2.1 Natural Frequency Results ­ ROSAP
Pontow et al. (2017) presents a natural frequency analysis of the 20 MW reference wind turbine
and support structure, assessed using Ramboll’s Offshore Structural Analysis Program (ROSAP).
The analysis employs a structural model of the support structure, which integrates a simplified
Rotor­Nacelle­Assembly, represented by point masses. The ROSAP implementation accounts for
a number of factors which can influence the stiffness of the structure, including corrosion, marine
growth, local scour and water level. Furthermore, the ROSAPmodel incorporates pile foundations
and soil stiffness. The model provides a more comprehensive dynamic analysis, which will serve
as a benchmark for comparing the results of the developed programs.

In Pontow et al. (2017) three distinct tests are conducted for three different stiffness configurations.
The test used as a benchmark will be the stiffest configuration, which does not include corrosion,
marine growth, nor local scour. The model does account for water level at lowest astronomical
tide (LAT). Given that the model employed in this study is derived from the referenced report, a
comparative analysis of the determined natural frequencies is feasible. The natural frequencies
obtained from Pontow et al. (2017) are summarized in Table 7.1, and the corresponding modes
shape to the global modes are illustrated in Figure 7.1.

7.2.2 Evaluation of 3D Frame
A comparative analysis is conducted between the global bending modes from ROSAP and the 3D
Frame model. The natural frequencies and the corresponding mode shape numbers are presented
in Table 7.2. The first and second global bending modes are primarily governed by the tower struc­
ture. When modeled as a clamped cantilever beam in the Frame program, the tower yields natural
frequencies of 0.2040 Hz and 0.6607 Hz for the first two bending modes. In the 3D Frame model,
the first coupled bending mode appears at 0.1903 Hz, representing a decrease of approximately

Table 7.1: Natural frequency for first 10 modes. Pontow, S.,Kaufer, D., Shirzadeh, R. & Kühn M.
(2017), Design Solution for a Support Structure Concept for future 20MW, INNWIND.EU, p. 34

4x4­ M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 M.10
LSTIF (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

0.1632 0.1640 0.8254 0.9303 1.0005 1.5978 1.6352 2.4639 2.4673 2.4796
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Figure 7.1: First eight eigenmodes of the jacket structure. Pontow, S.,Kaufer, D., Shirzadeh,
R. & Kühn M. (2017), Design Solution for a Support Structure Concept for future 20MW, IN­
NWIND.EU, p. 34

Table 7.2: Comparison of frequencies to global bending modes in ROSAP and 3D Frame, with
corresponding mode number.

1st Bending (T) 2nd Bending (T) 3rd Bending (J/T) 4th Bending (J/T)
ROSAP 0.1632 Hz 1 0.903 Hz 4 1.0005 Hz 5 1.6352 Hz 6
3D Frame 0.1903 Hz 1 0.6196 Hz 4 2.216 Hz 6 3.773 Hz 13

0.01 Hz. By comparison, the ROSAP model predicts the first bending mode at 0.1632 Hz, which
may suggest that the jacket structure in the 3D Frame model provides greater overall stiffness.
One possible explanation for this difference lies in the boundary conditions, as the ROSAP model
incorporates soil stiffness, while the 3D Frame model assumes a simple supported base. Addition­
ally, the discrepancy may be partly due to differences in the tower modeling, as the applied JRNA

is kept unknown in Pontow et al. (2017).

The ROSAP model generally exhibits significantly lower natural frequencies, suggesting reduced
stiffness and/or higher mass compared to the 3D Frame model, as demonstrated in Table 7.2. How­
ever, the same conclusion cannot be drawn for the second bending mode, as the ROSAP model
predicts a frequency approximately 0.3 Hz higher than that of the 3D Frame. Notably, this sec­
ond bending mode of the ROSAP model also exceeds the second bending mode of the tower in
Table 6.10. This finding suggests that the mill model used in ROSAP differs from that employed
in the 3D Frame, resulting in a stiffer effective system within this mode range.

The 3D Frame model provides a reasonable representation of the first and second bending mode
shapes when compared to the ROSAP model. In contrast, the third and fourth bending modes
show clear differences between the two models. The mode shapes are not consistently aligned,
and the natural frequencies begin to diverge significantly. This growing deviation suggests that
the models differ more substantially in how they capture the dynamic behavior of the structure at
higher modes, likely due to differences in how the jacket and tower are modeled.
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In summary, these results indicate that the 3D Frame model is suitable for capturing the funda­
mental dynamic characteristics of the system but becomes less reliable in reproducing higher­order
bending behavior. Further investigation into model assumptions and input parameters may help
reduce these discrepancies.

7.2.3 Evaluation of Programs Performance Against 3D Frame
A comparison between the 2D models and the 3D Frame model for the combined jacket­tower
system reveals that the 2D models consistently predict lower natural frequencies across all four
global bending modes, as shown in Table 6.11. A contributing factor may be the fixed tower and
RNA mass, which constitutes a larger proportion of the total system mass in the 2D models. This
shifts the overall mass–stiffness balance, resulting in lower natural frequency estimates.

However, in contrast to the jacket­only case, the 2D models show improved agreement with the
3D Frame results, particularly for the first and second bending modes. This improvement is likely
because these modes are primarily governed by the tower, which is modeled using beam elements
in all four programs. As a result, the influence of jacket simplifications in the 2Dmodels is reduced,
leading to more accurate frequency estimates.

The third global bendingmode shows the largest deviation from the 3D Framemodel among the 2D
models, with relative differences of 17% and 16% for the 2D Truss and 2D Frame, respectively.
The third mode is primarily influenced by the jacket structure, making it more sensitive to the
simplifications inherent in the 2D representations.

Across all programs, the 3D Truss model provides the closest overall alignment with the 3D Frame,
particularly for the first two global bending and torsional modes. The computed natural frequencies
show only minor deviations, with a maximum relative error of 1.5% on global bending mode 3.
This highlights that, despite its simplified element formulation, the truss based model remains
effective in approximating the global modes of the full frame system with the tower and RNA
included.

7.3 Model Benchmarking and Computation Time
As part of the results in Section 6.3 the computational efficiency of the programs has been evaluated
based on computation time. The results in Table 6.14 and 6.15 indicate a clear trend; computation
time increases with the model complexity from the simplest model to the most complex.

7.3.1 FLOPs and Computation Time
An effective measure of algorithmic efficiency is counting floating point operations (FLOPs). It
is important to highlight that FLOPs are not directly measured here, but would have served a
better overview of the models complexity and computation efficiency, as FLOPs are hardware
independent.

It has not been possible to track FLOPs on any of the programs due to the implementation, which
has led to tracking computation times. The offered FLOPs counting tool for Python is not supported
by Windows and require a Linux based system (Flozz, 2025). While absolute computation times
vary between computation (1) and (2) due to differences in processor speed, the relative speeds
remain fairly consistent, showcased in Table 6.14. This suggests that while computation time is
hardware­dependent, relative performance between model types is a more stable and comparable
metric. However, even when averaged over 10,000 runs, there is still some inherent uncertainty.

7.3.2 Computational Efficiency and Utility Evaluation
As discussed in Section 7.1, the 3D Truss model provides the best approximation of the 3D Frame
results. It also offers a significant computational advantage, reducing computation time to 25% of
the 3D Frame when analyzing the jacket structure.
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While the 2D Frame model offers a good approximation of higher­order modes beyond the first
global bending mode, its practical utility is limited, as the lowest natural modes are typically the
most critical. However, it does offer a significant computational advantage, running at roughly
10% the speed of the 3D Frame model.

As shown in Section 7.2, the addition of the tower and RNA improves frequency approximation
across all models. However, it also leads to a significant increase in computation time. This
effect is more pronounced in the truss models, where the number of DOFs increases significantly
due to the use of beam elements for the tower structure, combined with a more computationally
demanding eigenvalue solver. Despite this increase, the 3D Truss program still completes analysis
in approximately 30–35% of the time required by the 3D Frame model.

7.4 Convergence of the Frame Models
Both the 2D Frame and 3D Frame program show convergence, as visualized in Figure 6.8. The
evaluation focuses on the jacket structure only, since the tower implementation does not support
element subdivision in the current implementation.

The 3D Frame model is limited to a maximum of 64 element subdivisions due to matrix size con­
straints, which restrict solver capacity. However, additional refinement beyond this point provides
minimal benefit. In the program validation and Figure 5.5 it is shown that the solutions stops
converging when the error becomes less than 2 · 10−8.

Interestingly, the first bending mode of the 3D Frame model, once converged, aligns more closely
with the result from the 3D Truss program in Table 6.5. The same trend is observed in Table 6.7
for the first torsional mode. While the available data is limited, this pattern suggests that the 3D
Truss model may serve as a reliable approximation of the fully converged 3D Frame behavior,
particularly for lower modes. Furthermore, this observation strengthens the argument for using
the 3D Truss program to approximate the 3D Frame.
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8 Conclusion
The primary objective of this project was to develop an in­house finite element program for deter­
mining the natural frequencies and mode shapes of jacket foundations. The development aimed
at enhancing usability and reducing application time through parametric user inputs for the jacket
design. To investigate whether simpler models could serve as alternatives to a full­scale 3D Frame
model, four model types were implemented: 2D Truss, 2D Frame, 3D Truss, and 3D Frame. Each
model was assessed for its accuracy in predicting natural frequencies and mode shapes, as well as
its computational efficiency.

The 3D Frame program was evaluated by comparing its results against a reference jacket from
Pontow et al. (2017). While its natural frequencies showed noticeable deviations, resulting from
stiffness and mass discrepancies in the jacket and tower, the 3D Frame model still accurately re­
produced the first two mode shapes. This suggests that refinements to the input data is needed for
improved frequency accuracy.

The comparative analysis of the 2D Truss, 2D Frame and 3D Truss against the 3D Frame highlights
key differences between accuracy and computational efficiency. The 3D Truss model is closely
matching the 3D Frame’s results for the first global bending, axial, and torsional frequencies, with
relative errors below 0.35%. Its simplified formulation, using only bar elements, reduces compu­
tation time to roughly 25% of the 3D Frame, making it an efficient choice for early­stage dynamic
assessments.

The 2D Frame model shows better alignment with the 3D Frame results for global bending modes
2 through 4. However, it underestimates the first global bending frequency by 16%, cannot cap­
ture torsional behavior, and suffers from geometric simplifications that lead to significant mass
discrepancies. The 2D Truss model, while the fastest, exhibits larger deviations and the lowest
accuracy overall, making it the least suitable option for dynamic analysis.

The utility of the programs improves significantly with the inclusion of the tower and RNA. Mod­
eling the tower using beam elements and applying Lagrange’s method of undetermined multipliers
in the truss models results in closer agreement with the 3D Frame model in terms of both tower
response and overall system dynamics. The 3D Truss program shows a relative difference of 1.5%
or less compared to the 3D Frame model across all evaluated global modes. Despite the added de­
grees of freedom introduced by the tower and the use of Lagrange multipliers, the 3D Truss model
achieves a computation time of approximately 30–35% of the 3D Frame model.

The analysis of the developed models shows that a simplified 3D Truss model can closely approx­
imate natural frequencies of a 3D Frame model for a combined wind turbine and support structure.
This study demonstrates that using simplified models with bar elements can significantly reduce
computation time while maintaining reliable approximations. These findings support the possibil­
ity of using simpler modeling approaches for preliminary design and experimental testing.
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9 Future Work
While this project successfully developed and analyzed computational models for structural dy­
namics, several aspects remain open for further exploration and refinement. This final chapter
outlines and discusses potential scopes for future work, focusing on enhancing model accuracy
and expanding the applications of the developed programs.
Model and Experimental Testing
The estimation of natural frequencies differs significantly from the benchmark established by the
ROSAP analysis in the report by Pontow et al. (2017) and further testing of the model is required.
The parametric implementation facilitates analysis through systematic variation of parameters, as­
sessing its effect on natural frequencies. It should be examined whether the present implementation
can accurately approximate experimentally determined natural frequencies, or if additional model
updates are required.
Improve Model Accuracy
A key issue in the 2Dmodels is the mass discrepancy when transitioning from 3D to 2D. In order to
improve model accuracy, the models should be tested across a range of mass up­ and down­scaling
in 2D, and performing a comparative analysis to the 3D Frame model.

The 3D Truss program for the jacket–transition piece system exhibits notable discrepancies com­
pared to the 3D Framemodel in higher­order global bendingmodes. A limitation lies in the absence
of node connections at the intersections of X­braces in the truss model, which prevents the capture
of local brace­related modes. To address this, virtual restraints can be introduced to reestablish
connectivity, either through spring elements or by employing Lagrange multipliers, as success­
fully implemented in the tower modeling. However, the additional computational cost introduced
by this modification should be assessed to determine whether the accuracy gains justify the in­
creased complexity.

Additionally, the input data could be further refined by applying incremental adjustments to the
geometric properties of individual elements. Such enhancements may help improve frequency
predictions, particularly in higher modes where sensitivity to geometric stiffness becomes more
pronounced.
Extended Applications
Integrating a parametric implementation for the tower is a logical next step in extending the model.
This enhancement would enable user input and adaptation, allowing analysis using parametric
variations of the tower structure.

Additionally, a considered extension of the program could include the option of applying loads
to the structure, specifically gravity and temperature loading. Gravity loading would allow the
optimization of the design by analyzing stress in the elements at the bottom levels. Furthermore,
temperature loading would support the objectives of the Hybrid Wind project, with the final goal
of determining the influence of cold climate effects.

With the application of loads, the models could further be extended to incorporate a solver for
computing section forces, enabling identification of critical elements in the jacket design. Ad­
ditionally, it would allow the implementation of a geometric stiffness matrix to the truss model,
aiming to more accurately approximating the behavior of a frame model.
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A Lagrange Multipliers
A.1 Coupling of Jacket Foundation and Tower Model in 2D
The theoretical foundation for the method of Lagrange’s multipliers is outlined in Cook et al.
(1989). This appendix demonstrates the theoretical formulation used to couple the 2D Truss model
representing the jacket foundation with a 2D Frame model representing the wind turbine tower
structure. The two substructures are modeled independently and coupled through the method of
Lagrange multipliers.

A.1.1 Equations of Motion
The governing equation of motion for the tower structure is written in matrix form as

M̄r̈+ K̄r = 0 (A.1)

and

• u1 = dT1 r,

• u2 = dT2 r,

• u3 = dT3 r.

where di is a zero vector with d[i] = 1.

The equation of motion for the jacket structure is written in matrix form as

Mq̈+Kq = 0 (A.2)

and

• qx1 = (bx1)Tq,

• qy1 = (by1)Tq,

Figure A.1: DOF coupled through Lagrange multipliers. (Left: Jacket­Structure, Right: Tower­
Structure
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• qx2 = (bx2)Tq,

• qy2 = (by2)Tq.

where bi is a zero vector with b[i] = 1.

A.1.2 Coupling Conditions
The coupling conditions are defined such that the displacements of the tower’s base and the top
nodes of the jacket are equal in the x and y directions, and rotational compatibility is ensured
through an angular constraint. These constraints are expressed as

u1 =
1

2
(qx1 + qx2 ) =

1

2

(
(bx1)T + (bx2)T

)
q (A.3)

⇒
[
1
2

(
(bx1)T + (bx2)T

)
−dT1

] [q
r

]
= wT

1

[
q
r

]
= 0 (A.4)

u2 =
1

2
(qy1 + qy2) =

1

2

(
(by1)

T + (by2)
T
)
q (A.5)
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1
2

(
(by1)T + (by2)T

)
−dT2
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]
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[
q
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]
= 0 (A.6)

u3 =
1

L
(qy2 − qy1) =

1

L

(
(by2)

T − (by1)
T
)
q (A.7)

⇒
[
1
L

(
(by2)T − (by1)T

)
−dT3

] [q
r

]
= wT

3

[
q
r

]
= 0 (A.8)

Collecting all constraint equations into one matrix form yields

w =
[
w1 w2 w3

]
(A.9)

The system matrices are augmented to incorporate the Lagrange multipliers

Mλ =

[M 0
0 M̄

]
0

0 0

 , Kλ =

[K 0
0 K̄

]
w

wT 0

 (A.10)

The constraints are included via the augmented system

(
Kλ − ω2Mλ

)qr
λ

 = 0 (A.11)

The described formulation enables a modular approach to modeling wind turbine foundations by
coupling finite element models via constraints.

A.2 Coupling of Jacket Foundation and Tower Model in 3D
This appendix extends the theoretical formulation used for the 2D case to a 3D setting, where
both the jacket foundation and the tower structure are modeled in three dimensions. The coupling
is again handled via the method of Lagrange multipliers, enforcing displacement and rotational
continuity between the two systems.
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Figure A.2: DOF coupled through Lagrange multipliers. (Left: Jacket­Structure, Right: Tower­
Structure

A.2.1 Equations of Motion
The governing equation of motion for the tower structure is

M̄r̈+ K̄r = 0 (A.12)

and

• u1 = dT1 r,

• u2 = dT2 r,

• u3 = dT3 r,

• u4 = dT4 r,

• u5 = dT5 r,

• u6 = dT6 r.

The governing equation for the jacket foundation is

Mq̈+Kq = 0 (A.13)

and

• qxn = (bxn)Tq,

• qyn = (byn)Tq,

• qzn = (bzn)Tq,

for n = 1, 2, 3, 4.

A.2.2 Coupling Conditions
The coupling is enforced at four top nodes of the jacket. Let these nodes be labeled (1), (2), (3), (4).
The constraints are derived as
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Translation in x­direction

u1 =
1

4
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4
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Translation in y­direction[
1
4

(
(by1)T + (by2)T + (by3)T + (by4)T

)
−dT2

] [q
r

]
= wT

2

[
q
r

]
= 0 (A.16)

Translation in z­direction[
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Rotation about x­axis Only nodes (1) and (3) are used
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Rotation about y­axis Only nodes (2) and (4) are used

u5 =
1
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Torsion about z­axis The constraint is formulated using average slopes between diagonally op­
posite nodes

1

L13
(qx3 − qx1 ) = ay,

1

L24
(qy2 − qy4) = ax (A.22)

These give a formulation for a sixth constraint u6, which can be generalized as
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All constraints are collected in

w =
[
w1 w2 w3 w4 w5 w6

]
(A.24)

The augmented matrices are assembled as

Mλ =

[M 0
0 M̄

]
0

0 0

 , Kλ =

[K 0
0 K̄

]
w

wT 0

 (A.25)

Finally, the coupled system becomes

(
Kλ − ω2Mλ

)qr
λ

 = 0 (A.26)

This fully coupled system ensures compatibility in all 6 DOFs across the interface between the
jacket and tower model in 3D.
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B Jacket Design

Figure B.1: Jacket Node placements for Initial Design. Pontow, S.,Kaufer, D., Shirzadeh, R.
& Kühn M. (2017), Design Solution for a Support Structure Concept for future 20MW, IN­
NWIND.EU, p. 67
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Figure B.2: Jacket dimensions for Initial Design. Pontow, S.,Kaufer, D., Shirzadeh, R. & Kühn
M. (2017), Design Solution for a Support Structure Concept for future 20MW, INNWIND.EU, p.
66.
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Figure B.3: Tower dimensions for Initial Design. Pontow, S.,Kaufer, D., Shirzadeh, R. & Kühn
M. (2017), Design Solution for a Support Structure Concept for future 20MW, INNWIND.EU, p.
74.
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D Digital Appendix
The Virtual Appendix includes the structural dynamic analysis programs (D.1), the results and
mode shape plots (D.2), and validation files (D.3).

D.1 Programs
The four analysis programs are provided in individual folders named:

• D11_VIB_2DTruss

• D12_VIB_2DFrame

• D13_VIB_3DTruss

• D14_VIB_3DFrame

Each program contains Python scripts for structural modal analysis using bar or beam elements in
2D or 3D, with built­in plotting and frequency extraction.

D.2 Mode Shape Plots
Mode shape plots resulting from the dynamic analysis are stored in a separate folder, organized by
program type:

• D21_VIB_2DTruss

• D22_VIB_2DFrame

• D23_VIB_3DTruss

• D24_VIB_3DFrame

Each folder includes subfolders for plots of specific models.

Example folder structure for D24_VIB_3DFrame:

• D24_VIB_3DFrame:

– D241_Jacket_Frequencies

– D242_JacketTower_Frequencies

– D243_Tower_Frequencies (Only present in Frame folders)

Each plot filename follows the structure

[ModelType]_[Component]_[modeXX]_[View].png

Where:

• ModelType – e.g., 3D_Frame

• Component – Jacket, JacketTower, or Tower

• modeXX – Mode number (0­based index)

• View – Viewpoint (e.g., XY, XZ), only used in 3D models
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D.3 Validation Files
Validation files are included to support verification and correctness of the developed models and
implementation. The following files are available:

• D31_2D_Truss_validation.py

• D32_2D_Frame_validation.py

• D33_3D_Truss_validation.py

• D34_3D_Frame_validation.py

These files validate the numerical implementation and confirm that the simulation results align
with analytical solutions.
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E Use of AI Technology
The following AI technology has been used.

GPT 4o:
Used for LateX syntax for tables, figures and references. Also, used for synonyms / word alterna­
tives.

DeepL:
Used for grammar and spelling corrections. Also, used for synonyms / word alternatives.

GitHub Copilot:
Interactive AI integrated in Visual Studio Code. Supporting syntax errors and providing code
suggestions. Also, used for debugging.

Microsoft Copilot:
Used for syntax for LaTeX for tables, figures and references. Also, used for code debugging,
synonyms / word alternatives and translations.
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